
Including the Human Factor in Dependability Benchmarks

Aaron B. Brown, Leonard C. Chung, and David A. Patterson
Computer Science Division, University of California at Berkeley

387 Soda Hall #1776, Berkeley, CA, 94720-1776
{abrown,leonardc,pattrsn}@cs.berkeley.edu
Abstract
We describe the construction of a dependability benchmark
that captures the impact of the human system operator on
the tested system. Our benchmark follows the usual model
of injecting faults and perturbations into the tested system;
however, our perturbations are generated by the unscripted
actions of actual human operators participating in the
benchmark procedure in addition to more traditional fault
injection. We introduce the issues that arise as we attempt
to incorporate human behavior into a dependability bench-
mark and describe the possible solutions that we have
arrived at through preliminary experimentation. Finally,
we describe the implementation of our techniques in a
dependability benchmark that we are currently developing
for Internet and corporate e-mail server systems.

1. Introduction

Dependability benchmarks are a crucial factor in driv-
ing progress toward highly reliable, easily maintained
computer systems [3] [9]. Well-designed benchmarks pro-
vide a yardstick for assessing the state of the art and pro-
vide the framework needed to evaluate and inspire progress
in research and development. To achieve these goals,
benchmarks must be accurate, realistic, and reproducible;
in the case of dependability benchmarks, this means that
they must evaluate systems against the same set of depend-
ability-influencing factors seen in real-life environments.

One of the most significant of these factors is human
behavior. A system’s human operators exert a substantial
influence on that system’s dependability: they can increase
dependability via their monitoring, diagnosis, and prob-
lem-solving abilities, but they can also decrease depend-
ability by making operational errors during system mainte-
nance. The human error factor is particularly important to
dependability: anecdotal data from many sources has sug-
gested that human error on the part of system operators
accounts for roughly half of all outages in production
server environments [2]. Recent quantitative studies of
Internet server sites and of the US telephone network infra-

structure numerically confirm the significance of human
error as a primary contributor to system failures [4] [12].

Most existing work on dependability benchmarks has
ignored the effects of human behavior, positive or nega-
tive; this is unfortunate, but perhaps not surprising given
that human behavior is typically studied by psychologists
or HCI specialists, not systems benchmarkers. In this
paper, we present our first steps at bringing consideration
of human behavior into the dependability benchmarking
world, and describe our work-in-progress toward building
a human-aware dependability benchmark. Although our
methodology begins with a reasonably traditional depend-
ability benchmarking framework, we expand on existing
work by directly including human operators in the bench-
marking process as a source of system perturbation.

Humans add significant complications to the bench-
marking process, and much of our research focus is on how
to include humans while keeping the benchmarks efficient
and repeatable. A key insight is to measure the human
dependability impact indirectly: our benchmarks measure
the system, not the human, and we deduce the human
dependability impact indirectly through its effects on the
system. Other simplifying techniques that we will discuss
include approaches for choosing and preparing human
operators for our tests (Section 3), selecting human-depen-
dent metrics that can be automatically collected (Section
2), developing an appropriate workload for the human
operator (Section 2), and managing the inherent variability
introduced by human operators (Section 3). We consider
these approaches in the concrete example of an e-mail
benchmark in Section 4.

2. Methodology

Traditional dependability benchmarks measure the
impact of injected software and hardware faults on the per-
formance and correctness of a test system being subjected
to a realistic workload [3] [9]. For example, the system’s
performance might fall outside its window of normal
behavior while it recovers from a hardware fault; the length
of the recovery process and the magnitude of the perfor-



mance drop are measures of the system’s dependability in
response to that fault. Typically, dependability benchmarks
are run without human operator intervention in order to
eliminate the possible variability that arises when human
behavior is involved. But as dependability emerges from a
synergy of system behavior and human response, ignoring
either component or their interactions significantly limits
the accuracy of the benchmark; both system and operator
must be benchmarked together.

To accomplish this joint measurement of system and
operator, we extend the traditional dependability bench-
marking methodology by allowing the human operator(s)
to interact with the system during the benchmark. The
interaction takes two forms. First, the operator plays an
active role in detecting and recovering from injected fail-
ures, just as they would in a real environment with real fail-
ures. Second, the operator is asked to carry out pre-selected
maintenance tasks on the system (for example, backups/
restores, software upgrades, system reconfiguration, and
data migration), again to simulate real-world operator
interaction with the system. We then measure the system’s
dependability as usual; unlike the traditional approach, the
dependability result now reflects the net dependability
impact of the human operator, be it positive or negative.

In essence, our approach is to create a standard system
dependability benchmark with the human operator as a
new source of perturbation, in addition to the standard per-
turbations injected in the form of software and hardware
faults. We can classify the human perturbation based on
how it arises. Reactive perturbation results from unscripted
human action in response to an injected hardware or soft-
ware fault, and reflects the operator’s ability to detect and
repair failures. If the operator is quick to respond and
recovers the system efficiently, the perturbation will have a
positive impact on dependability; if the operator makes
mistakes, is slow to respond, or simply fails to respond at
all, the impact will be negative. In contrast, proactive per-
turbations arise as the operator performs system mainte-
nance tasks unrelated to failure occurrences. These too can
have a negative or positive dependability impact depending
on how well the operator performs the task, how many
errors are made, and how the maintenance task itself
affects the system.

An important change in the benchmark semantics arises
when we include proactive perturbations. In traditional
dependability benchmarks the system is expected to have a
constant level of fault-free dependability; in contrast, with
our methodology this baseline can change as the result of
maintenance on the system (for example, an “upgrade”
maintenance task could increase performance or redun-
dancy). While this complicates the interpretation of bench-
mark results, it is more indicative of real-world depend-
ability, where maintenance is common. It does require
some care in cross-system benchmarking to ensure that

similar maintenance is performed on all tested systems.
While the above description of our methodology

implies that human operators must participate in the bench-
mark process, one might wonder if we could simulate the
human perturbations and thus eliminate the human. Unfor-
tunately, this reduces to an unsolved problem—if we were
able to accurately simulate human operator behavior, we
would not need human system operators in the first place!
While the HCI community has developed techniques for
modeling human behavior in usability tests [5], even in
those approaches human involvement is required at least
initially to build the model, and the resultant models are
typically highly constrained and system-specific, making
them inappropriate for use in a comparison benchmark.

Thus we are left with the approach of using live human
operators in the benchmarks; this is the only way to truly
capture the full unpredictable complexities of the human
operator’s behavior and the resulting impact on a system’s
dependability. To flesh out the approach, we must consider
how to choose operators for the benchmarks, what mainte-
nance tasks to give them, and what metrics we should use
for the final dependability scores. We must also confront
the challenges of dealing with human variability, perform-
ing valid cross-system comparisons with different opera-
tors, and structuring benchmark trials so that the number of
human operators is minimized. We discuss workloads and
metrics in the balance of this section, and return to the
remaining challenges in Section 3.

2.1. Human operator workload

The human operator workload consists of two parts: a
pre-specified set of maintenance tasks, and the interactions
that arise naturally as the operator repairs injected faults.
Since the reactive part of the workload is unscripted and
depends on the particular operator’s approach to the fail-
ures, we do not specify it in advance, and we will not con-
sider it further here.

The pre-specified set of tasks that the operator carries
out during the benchmark should be representative of the
real-world maintenance carried out in production installa-
tions of the type of system under test. Note that we define
“maintenance” rather broadly: any operator (non-end-user)
interaction with the system that is not an immediate reac-
tion to a failure is considered maintenance.

The ideal way to obtain a representative set of mainte-
nance tasks is to carry out a “task analysis” study in which
the experimenter shadows real operators as they run a pro-
duction system similar to that being benchmarked [8];
recording how these operators spend their time provides a
list of tasks ranked by importance or frequency. The draw-
back of task analyses is that they are time consuming and
often impractical, especially when the type of system being
benchmarked has never been deployed in production.



In such cases, a satisfactory set of maintenance tasks
can be selected by an expert familiar with the target sys-
tem’s application domain, using published studies of what
system administrators do as a guide [1] [6] [7]. An analysis
of these studies suggests a set of general categories of
maintenance tasks that apply to most systems:

Initial configuration: setting up new systems, includ-
ing hardware, operating system, and application installa-
tions. Increasing the capacity of an existing system.

Reconfiguration: a broad category covering everything
from small configuration tweaks to significant reconfigura-
tions like hardware, OS, or application upgrades.

Monitoring: using monitoring tools or probes to detect
failures, security incidents, and performance problems.

Diagnosis and repair: recovery from problems
detected by monitoring tasks. Diagnostic procedures, root-
cause analysis, and recovery techniques like hardware
repairs, software reinstallation/configuration, security inci-
dent response, and performance tuning. Unlike “Reconfig-
uration” tasks, these are unplanned and unscheduled.

Preventative maintenance: non-urgent tasks that
maintain a system’s integrity, redundancy, and perfor-
mance, or that adapt the system to changes in its workload. 

For an example of how these task categories were spe-
cialized for a dependability benchmark for e-mail server
systems, see Section 4.

2.2. Metrics

Traditional dependability benchmarks use performance
and correctness measures to quantify dependability.
Dependability scores are produced by examining how
these measures deviate from their expected norms as the
system is perturbed by injected faults. We can use this
same approach to quantify dependability in our human-
aware dependability benchmarks, since we are considering
human operator involvement as just another perturbation
source to the system. Dependability as measured by this
approach reflects the net impact of the human operator:
human error that affects performance or correctness will be
manifested as reduced dependability, whereas human inge-
nuity in efficiently repairing problems or performing main-
tenance will manifest as improved dependability.

The major advantage of this approach is that it vastly
simplifies the benchmark process compared to the alterna-
tive of trying to directly measure the human impact on
dependability. Because there is no need to directly measure
human error rate or the dependability impact of individual
human actions, the collection of dependability results can
be automated. Furthermore, it is easier to design bench-
marks for cross-system comparison, as there is no need to
match operator actions on one system to equivalent actions
on another (often an impossible task). Of course, there is
nothing preventing the benchmarker from collecting addi-

tional data on human error rates, error severity, or recovery
time; such data can prove useful in evaluating a system’s
maintainability, although they are not needed for a depend-
ability evaluation.

3. Reproducible benchmarks with humans

The inherent variability and unpredictability of human
behavior makes it a challenge to achieve reproducibility
when we include humans in our benchmarks. A crucial part
of our human-aware benchmarking methodology is to
manage the variance introduced by our human operators,
both within a single benchmarking experiment and across
benchmark runs on different systems or over time.

Variability in human operators comes from at least three
sources. First, different prospective operators will have dif-
ferent backgrounds and base skill levels (compare, for
example, an experienced sysadmin to a CS student). Sec-
ond, operators may have different levels of experience with
the system and the benchmark tasks. This is a particularly
acute problem when benchmarks are carried out iteratively,
as each iteration of the benchmark process increases the
operator’s experience with the system and can alter his or
her behavior on subsequent iterations. Finally, there is a
level of inherent variability in human behavior: two opera-
tors with identical experience and identical training given
identical benchmark tasks may still behave differently. 

3.1. Managing variability: single system runs

We propose a two-pronged approach for managing vari-
ability in one-off, single-system benchmarks. First, we
appeal to statistical averaging, deriving the final depend-
ability result from multiple iterations of the benchmark
with different operators participating in each iteration. Sec-
ond, we attempt to minimize the pre-averaging variability
by selecting the participating operators from a set of people
with approximately-equal levels of background and experi-
ence, and by providing training and support resources to
further equalize their knowledge bases.

Results from our pilot studies suggest that between 5
and 20 operators (iterations) will be needed to gain a statis-
tically-sufficient averaging effect; work from the UI com-
munity confirms these estimates and suggests that 4 or 5
operators maximizes the benefit/cost ratio [11].

3.1.1. Choosing operators

We can significantly reduce the variance between oper-
ator-participants by controlling for their background and
skill levels. Because real operators vary greatly in their
skills and experience, and because real installations have
different demands for operator quality and dependability,
we cannot establish a single set of selection criteria for all
dependability benchmarks. Instead, we define several



classes of operators, and allow the benchmarker to choose
those which best match the target environment of the tested
system. With this approach, results from one benchmark
run should be comparable to results from other benchmarks
using the same class of operators; benchmarks using differ-
ent classes of operators might also be comparable if the
operator level is used as a “handicap” on the results.

We observe at least three classes of benchmark opera-
tors (from highest to lowest qualification):

Expert: The operators have intimate knowledge of the
target system, unsurpassed skills, and long-term experience
with the system. These are operators who run large produc-
tion installations of the target system for their day jobs, or
are supplied by the system’s vendor. Benchmarks involv-
ing these operators will report the best-case dependability
for the target system, but may be realistic only for a very
small fraction of the system’s potential installed base.

Certified: The operators have passed a test that verifies
a certain minimum familiarity and experience with the tar-
get system; ideally the certification is issued by the system
vendor or an independent external agency. Benchmarks
involving these operators should report dependability simi-
lar to what would be seen in an average corporate installa-
tion of the tested system.

Technical: The operators have technical training and a
general level of technical skill involving computer systems
and the application area of the target system, but do not
have significant experience with the target system itself.
These operators could be a company’s general systems
administration or IT staff, or computer science students in
an academic setting. Benchmarks involving these operators
will report dependability that is on average similar to that
measured with certified operators, but there may be more
inter-operator variance and more of a learning curve factor.

Should human-aware dependability benchmarks reach
widespread commercial use (like the TPC database bench-
marks [15]), they will probably use expert operators.
Expert operators offer the lowest possible variance, are
unlikely to make naïve mistakes that could make the sys-
tem look undeservedly bad, yet still provides a useful indi-
cation of the system’s dependability and maintainability.
Published results from benchmarks like TPC often already
involve a major commitment of money and personnel on
the part of the vendor, so supplying expert operators should
not be a significant barrier.

For non-commercial use of dependability benchmarking
where experts are unavailable (as in academic or internal
development work), using certified operators is ideal since
certification best controls the variance between non-expert
operators. As it may be difficult to recruit certified opera-
tors, it is likely that technical operators will be often be
used in practice; we believe that accurate dependability
measurements can still be obtained in this case by provid-
ing suitable resources and training as described below.

3.1.2. Training operators

We can reduce any remaining variance within a chosen
class of operators by using standardized training to bring
all operators to the same level of understanding of the test
system. It has been our experience that this training must
be done at a conceptual level to help the operator build a
mental model of the system. The alternative, training on
specific tasks that appear in the benchmark, leads to the
unrealistic situation of operators follow checklists during
the benchmark rather than relying on ingenuity, explora-
tion, and problem-solving, as they would in real life.

Our initial experiments have suggested that an effective
method for conceptual training is to first provide a high-
level overview of the system’s purpose and design, then
have the operator carry out a simple maintenance task that
requires exploration of the system’s interfaces (for exam-
ple, changing a configuration parameter that is buried deep
in an unspecified configuration file or dialog box). If the
initial task is well-designed, the operator will have built up
enough of a mental model of the system and its interfaces
to proceed with the benchmark. With this approach, very
little formal training need be given, simplifying the deploy-
ment of the benchmark.

3.1.3. Resources for operators

Even with training, different operators may have differ-
ent gaps in their knowledge that show up during the bench-
mark. To mitigate the resulting variance, operators should
be provided with resources to fill these gaps. Two effective
forms of resources are documentation and expert help.

Documentation provides a knowledge base upon which
the operator can draw while performing the benchmark
tasks. For maximum realism, we believe the operator
should be provided with the unedited documentation
shipped with the testbed system and be given access to the
Internet and its various search engines. If at all possible,
the documentation should be provided electronically so
that its usage can be monitored automatically.

When documentation fails in real life, operators turn to
experts for help. It is important to provide a similar, but
standardized, option in the benchmarking process, both to
increase realism and to provide an “out” should the opera-
tor get stuck or frustrated with a task. We propose to do this
by making available a single “oracle” or expert during all
runs of the benchmark. The expert must be intimately
familiar with the system and the operator tasks; oftentimes
the benchmarker can play this role.

A challenge is making the oracle available in such a
way that it remains an appeal of last resort; if overused, the
oracle becomes the target of the benchmark, not the opera-
tor. One approach used successfully in user studies is to
make the oracle available via email [16], an approach that



also reduces the demands on the oracle’s time. Other possi-
bilities include providing only a limited number of calls to
the oracle, imposing an artificial time penalty for using the
oracle, or implementing the oracle as an automated “I give
up” button that simply completes the current task automat-
ically or restores the system to a known state.

3.2. Managing the learning curve effect

One of the most challenging problems with using live
human operators in dependability benchmarks is the learn-
ing curve effect: at the end of a benchmark iteration, the
operator has learned something about the system, and will
likely use that experience to perform better on subsequent
iterations. This is particularly a problem in cross-system
comparison benchmarks or iterative benchmarking of the
same system, where the cost of using a fresh set of opera-
tors for each system/iteration would be excessive.

Compensating for the learning curve effect is a chal-
lenging problem that we are only beginning to address. A
simple approach for comparison benchmarks is to random-
ize the order in which each operator uses the test systems;
with a large enough pool of operators, the learning curve
effects will be averaged across the systems. Alternately, the
effect of the learning curve can be estimated and factored
out by benchmarking each system repeatedly until its
dependability results stabilize.

For iterative benchmarking of a single system (for
example, during system development), other techniques
are needed. The most promising approach is to create a
system-specific model of human operator behavior,
describing how long operators take to respond to problems,
what kinds of responses are used, and what kinds of errors
are made. Although general simulation of a human opera-
tor is intractable, it should be possible to achieve a system-
and task-specific model using techniques developed in the
HCI community. In particular, models might be created by
observing live human operators in an initial benchmark
iteration, or perhaps by using expert analysis in a cognitive
walkthrough [5]. The benchmarker could use the model to
simulate the operators’ behaviors in later iterations, either
manually or automatically. An open question is how long
such a model would remain valid; after major changes to
the system or its interfaces, it is likely that the model would
need to be rebuilt.

4. An example: benchmarking e-mail

Our first target for evaluating our human-aware depend-
ability benchmarking methodology is e-mail. E-mail has
grown from its origins as a best-effort convenience to what
is today a mission-critical enterprise service with stringent
dependability needs. Surprisingly, no existing e-mail
benchmark attempts to quantify dependability.

Our approach follows the general methodology
described in Section 2. The benchmark applies a workload,
injects perturbations, and collects metrics while the system
is under the supervision of a human operator. The bench-
mark treats the e-mail service as a black-box for generality. 

The workload of the benchmark consists of three com-
ponents: performance, perturbation, and human workloads.
The performance workload consists of a realistic simula-
tion of e-mail traffic injected using standard protocols
(SMTP and POP3). The simulated workload is based on
the SPECmail2001 workload parameters [14] but is fully
parameterizable to allow the user to explore system behav-
ior under different load scenarios (for example, load
spikes, which are an increasingly relevant dependability
threat to Internet services). The perturbation workload has
not yet been finalized, but we will likely start with two
main types of fault injection: coarse-grained hardware and
software faults. For example, we will inject storage system
failures (corrupt data, failed disks, timeouts), network fail-
ures (corruption, transient connectivity loss, routing anom-
alies), and OS-level software faults (terminated processes,
driver hangs, erroneous return values), among others.

Finally, the human workload consists of maintenance
tasks chosen from the categories defined in Section 2.1 and
arranged in three steps of increasing difficulty. The first
step is a warm-up task consisting of a simple software
reconfiguration such as changing the default domain of
unqualified e-mail addresses; this step also serves as a
“training” step, allowing the operator to become familiar
with the system. The second step is a moderately difficult
task such as installing and configuring a server-side e-mail
virus filter. The third step is a challenging task such as
moving a group of users from one server to another. 

During each task, the benchmark measures the overall
service dependability. Our dependability metrics consist of
e-mail delivery delays and errors, the number of dropped/
corrupted e-mails, and service performance in fault-free,
induced-fault, recovery, and service overload scenarios. 

Due to the difficulty of finding certified operators in an
academic setting, we intend to use technical-level opera-
tors in our benchmark experiments as described in Section
3.1.1. We plan to automate the benchmark as much as pos-
sible, including the workload generator and instrumenta-
tion. Through these and other techniques, we hope to be
able run operators through without a benchmarker present,
except perhaps to serve as the on-call oracle.

5. Related work

Our perturbation-based benchmark methodology fol-
lows in the footsteps of existing work on dependability
benchmarking and extends our earlier work on availability
benchmarking, which measured the availability of RAID
systems by perturbing them with simulated disk failures



[3]. Our methodology also fits into the dependability
benchmarking framework defined by Madeira and Koop-
man [9], with our human-operator-induced perturbations
making up the “upsetload” in their terminology. Where our
methodology is unique is in its inclusion of the human
operator as a perturbation source: we are not aware of any
dependability benchmarks to date that include the human
component in their dependability measurements.

Many of the techniques, issues, and proposed solutions
in this paper are adaptations of traditional behavioral
research techniques for human-computer interaction, such
as those described in Landauer’s excellent survey [8].
However, unlike the HCI approaches, it is our goal to mea-
sure the system’s behavior rather than the human’s—in our
benchmarks, the human operator is not there to be directly
observed or measured, but to provide realistic perturbation
and stimulus to the system. In that sense our work is most
similar to work in the security community on the effective-
ness of security-related UIs, such as Whitten and Tygar’s
study of PGP [16]. While we can (and do) borrow advice
on topics like selection of operators, task analysis, and
experiment logistics from the HCI community, their stan-
dard experimental designs and metrics do not directly
apply to our dependability benchmarking task.

Finally, our proposed e-mail benchmark differs from
other widely-used e-mail benchmarks in that it measures
dependability as well as performance. In particular, the two
major email benchmarks in production use today (SPEC’s
SPECmail2001 [14] and Netscape’s Mailstone [10]) focus
only on performance, do not include facilities for injecting
perturbations, and do not measure dependability beyond a
simple count of dropped client connections. While some
research e-mail systems have been evaluated under simple
perturbation (e.g., Porcupine [13]), none have included
consideration of the human operator.

6. Conclusions and future directions

As dependability increasingly supplants performance as
the essential metric for computer systems, dependability
benchmarks are becoming essential tools for system
designers and evaluators. Yet to date, dependability bench-
marks have ignored the behavior of a computer system’s
human operators and administrators, a key piece of the
dependability puzzle. In this paper we have presented a
first attempt at addressing this deficiency: our human-cen-
tric benchmarking methodology should provide an effec-
tive means of incorporating the effects of human operator
behavior into dependability measurements.

What we have presented here is just a first step, how-
ever. Our methodology will need to be proven and refined
through extensive experimental verification; experimenta-
tion will also help explore the extent of cross-operator vari-
ability and the tradeoffs involved in issues such as select-

ing and training operators. We are pursuing this follow-on
work in the context of our e-mail dependability bench-
mark. Other issues that remain to be explored include the
development of techniques for pre-evaluating the skill
level of participating operators, more advanced depend-
ability metrics that are parameterized by the operator’s
skill level, and extensions that allow for a direct measure of
a system’s maintainability and scalability along with the
indirect measurements extracted through the dependability
metrics. These are all fruitful and important directions for
future research, and we look forward to seeing them
addressed by the community.

References

[1] Anderson, E. and D. A. Patterson. “A Retrospective on
Twelve Years of LISA Proceedings.” Proc. 13th Systems
Administration Conference (LISA XIII), Seattle, WA, 1999.

[2] Brown, A. and D. A. Patterson. “To Err is Human.” Proc. 1st
Workshop on Evaluating and Architecting System depend-
abilitY (EASY ’01), Göteborg, Sweden, July 2001.

[3] Brown, A. and D.A. Patterson. “Towards Availability
Benchmarks: A Case Study of Software RAID Systems.”
Proc. 2000 USENIX Annual Technical Conf., San Diego,
CA, June 2000.

[4] Enriquez, P. “Failure Analysis of the PSTN.” Unpublished
talk available at http://roc.cs.berkeley.edu/retreats/spring_
02/d1_slides/RocTalk.ppt, January 2002.

[5] Ivory, M. and M. Hearst. “The State of the Art in Automat-
ing Usability Evaluation.” ACM Computing Surveys,
33(4):470–516, December 2001.

[6] Kolstad, R. “1992 LISA Time Expenditure Survey.” ;login:,
the USENIX Association Newsletter, 1992.

[7] Kolstad, R. “Sysadmin Book of Knowledge.” http://ace.
delos.com/taxongate.

[8] Landauer, T. K. “Research Methods in Human-Computer
Interaction.” In Handbook of Human-Computer Interaction,
2e, M Helander et al. (ed), Elsevier, 1997, 203–227.

[9] Madeira, H. and P. Koopman. “Dependability Benchmark-
ing: making choices in an n-dimensional problem space.”
Proc. 1st Workshop on Evaluating and Architecting System
dependabilitY (EASY ’01), Göteborg, Sweden, July 2001.

[10] Netscape, Inc. Mailstone Utility. http://docs.iplanet.com/
docs/manuals/messaging/nms41/mailston/stone.htm.

[11] Nielsen, J., and Landauer, T. K. “A mathematical model of
the finding of usability problems.” Proc. ACM INTERCHI
’93, Amsterdam, The Netherlands, April 1993, 206–213.

[12] Oppenheimer, D. and D. A. Patterson. “Architecture, opera-
tion, and dependability of large-scale Internet services.”
Submission to IEEE Internet Computing, February 2002.

[13] Saito, Y., B. Bershad, and H. Levy. “Manageability, Avail-
ability, and Performance in Porcupine: A Highly Scalable
Internet Mail Service.” Proc. 17th Symposium on Operating
Systems Principles (SOSP ’99), Kiawah Island, SC, 1999.

[14] Standard Performance Evaluation Corporation.
SPECmail2001, http://www.spec.org/osg/mail2001/.

[15] Transaction Processing Performance Council Benchmarks.
http://www.tpc.org.

[16] Whitten, A. and J. D. Tygar. “Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0.” Proceedings of the 9th
USENIX Security Symposium, August 1999.


	Including the Human Factor in Dependability Benchmarks
	Abstract
	1. Introduction
	2. Methodology
	2.1. Human operator workload
	2.2. Metrics

	3. Reproducible benchmarks with humans
	3.1. Managing variability: single system runs
	3.1.1. Choosing operators
	3.1.2. Training operators
	3.1.3. Resources for operators

	3.2. Managing the learning curve effect

	4. An example: benchmarking e-mail
	5. Related work
	6. Conclusions and future directions
	References


