Why do systems fail?

Review studies from 1993-98

Large commercial enterprises

Look to the future

Lisa Spainhower

m eServer Technology

Comparative Study 1993

GENRE	EXAMPLE	DATA SOURCES
Campus-wide LAN	Heterogeneous	Industry Surveys
Mainframe	IBM S/390 9021	IBM Customer Logs Customer Report
Unix SMP	HP 9000	Vendor Claims/IB specs Technical Report Industry Research
HA Mainframe	IBM S/390 XRF	Customer Data
HA Unix	HP SwitchOver/UX	Above Unix Sources Vendor Claims
Fault Tolerant	Tandem Himalaya	Customer Logs Technical Report
????	IBM S/390 Parallel Sysplex	IBM Specs & Models

Comparative Study 1993

GENRE	ANNUAL	% BY CAUSE		
	DOWNTIME (unplanned)	HW	SW	other
Campus-wide LAN	453.6 HRS	na	na	na
Mainframe	18.0	4.4	68.3	27.2
Unix SMP	76.1-136.9	34.3	40.7	25.0
HA Mainframe	5.8	0.9	63.7	35.4
HA Unix	21.5	14.9	70.2	14.9
Fault Tolerant	8.9	18.8	74.1	7.1
FT Mainframe	8.4 MIN	14.3	57.1	28.6

1995 Downtime in a poorly-managed S/390 LPAR

	Impact events	Events	
ATTRIBUTION	# OUTAGES	# OUTAGES	IMPACT RATIO
Control Center	70	24	2.9
Environment	18	5	3.6
Hardware	10	1	10
Software	118*	52	2.3
Total	216	82	2.6
ATTRIBUTION	OUTAGE (min)	OUTAGE (min)	IMPACT RATIO
Control Center	5202	1949	2.7
Environment	1275	454	2.8
Hardware	875	88	10
Software	6209	3062	2.0
Total	13561	5553	2.4

^{*}TM-56%, Apps-16%, DBA-14%, OS-6%, other-

1995 Downtime in a poorly-managed S/390 LPAR

Total Outage per log: 226 hours

Per one outage/event: 93 hours

√ # 1 Contributor is software: product & process

1818 process

453 product

791 uncertain

3062 total (51 hours)

Assume all CC outages are process (1949 min.; 32 hours)

✓ Technology - HW/SW - 10-24% (9-22 hours)

Aggregated UNIX server data

Downtime Cause % UNIX Standalone **UNIX Cluster**

Hardware 42 46 Software 34 36 Other 24 18

Data from a very large well-managed Unix customer

% Unplanned downtime % Planned downtime

HW43.8 OS 7.8 App 7.3 Com link 18.8 DB 2.0

Environment 0.7 Supplier Op tools 1.8 **Process** 6.2

Org/structure 8.0 Human error 5.0

Other 5.8

HW maint	26.5
OS install	1.6
App Release	34
Com link	2.5
DB admin, BU	31.5
Dis Rec Test	0
Pwr Test	0.2
Other	3.7

1998 Unix Investigation

GG claims Unix HA/FT clusters limited to 99.9% availability until 2000.

HP has 99.95% guarantee; announced plan for 5 9s in 2000.

Objective

Determine achievable availability for Unix for 98-00

Major Limitation

Very limited, inconsistent data available

1998 Unix Investigation

	Customer	DH Brown
# clusters/nodes	11/63	15/38
unsched. avail.	99.6%	99.99%
failover/yr/node	2.4	1.4
downtime/failover	>1 hr	15 min
node failover	-	4-20 min

- → With improved HW: 8.6-76 min/yr/2 nodes
- Software retry will also improve
- Measured as HP specifies, 4 9s is feasible with 5
 9s for OPS and Web server

Lessons from the 90s

- Management discipline is critical to HA
- → Fault tolerant servers make a difference
- Clusters are difficult to implement

Making the Front Page

Source: Gartner Group

eBay

12 June 1999 outage: 22 hours
Operating System Failure

Cost: \$3 million to \$5 million revenue

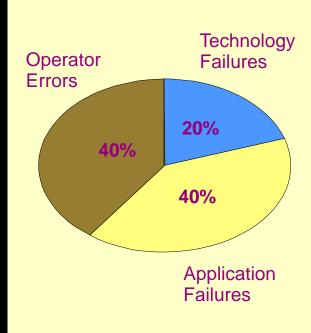
hit

26% decline in stock price

AT&T

13 April 1998 outage: Six to 26 hours
Software Upgrade
Cost: \$40 million in rebates
Forced to file SLAs with the

FCC (frame relay)


America Online

6 August 1996 outage: 24 hours Maintenance/Human Error

Cost: \$3 million in rebates

Investment: ???

Causes of Unplanned Application Downtime

Charles Schwab & Co.

24 February 1999 through 21 April

1999: Four

outages of at least four hours Upgrades/Operator Errors Cost: ???; Announced that it had

made \$70 million in new infrastructure

investment. \$s

Dev. Bank of Singapore

1 July 1999 to August 1999:

Processing Errors

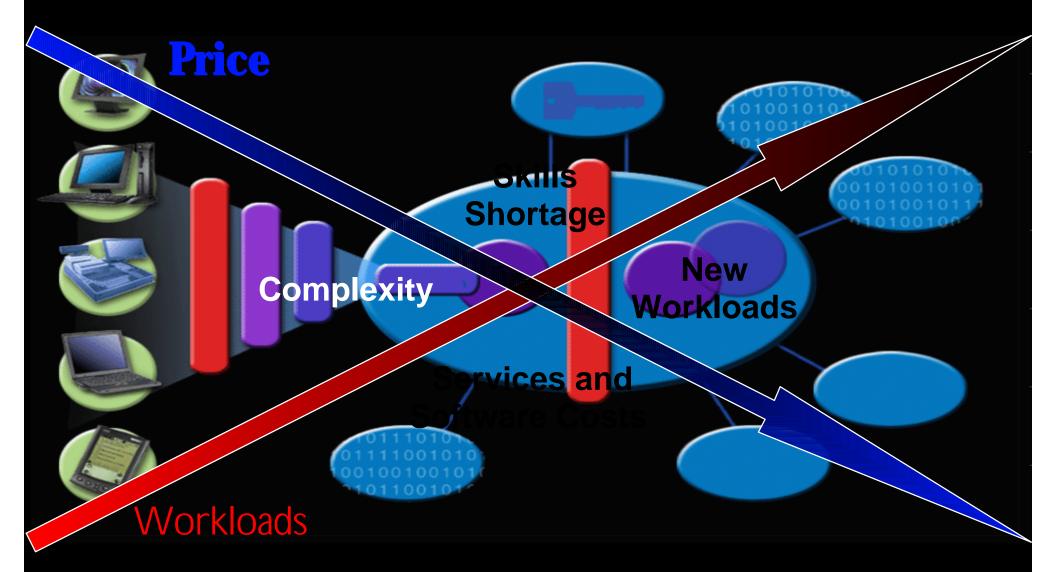
Incorrect debiting of POS

due to a system overload Cost: Embarrassment/loss of integrity; interest charges

E*Trade

3 February 1999 through 3 March 1999: Four outages of at least five

hours


System Upgrades

Cost: ????

22 percent stock price hit on 5

February 1999

Managing Exploding e-business Infrastructure

Challenges for the 00s

- Increased importance of firmware
- Circuit failure mechanisms
- State encapsulation
- On-the-fly change
- Dynamic resource allocation
- Configuration validation