Dependability Overview:
Vocabulary and Techniques

George Candea
Stanford University

What Is Dependability ?

=trustworthiness of acomputer system
with regard to the servicesit provides

m Reliability = continuous functioning w/out failure
m Availability = readiness for usage
m Safety = avoid catastrophic effects on environment

m Security = prevent unauthorized access and/or
handling of information

September 13, 2001 ©S2944 : Recovery Oriented Computing 2

Historical Evolution

1. Make things work and keep them working - reliability
Babbage's analytical engine
MTBF(vacuum tubes) = computation time

2. Widespread use (accounting, payroll, inventory, billing)
-> availability

3. Critical applications (FAA, early -warning, nuclear power
plants, aircraft, ABS) > safety

4. Distributed systems -> increased node accessibility and
vulnerability - security

‘September 13, 2001 ©5294.4 : Recovery Oriented Computing 3

Some Definitions

= Specification = agreed description of a sw system'’s expected
service

= Environment = any external entity that interacts w/ system
(present/past/future). Beware of different system boundaries.

m User = that part of the environment that provides inputs to the
service and/or receives outputs

= Function = what the system should do

= Behavior = what the system does do
(hence, service = abstraction of system behavior)

= Structure = what makes the system do what it does

September 13, 2001 €S2044: Recovery Orieted Computing 4

From Fault to Failure

m Failure = deviation of system'’s service from its spec
m Error = the part of system state that is liable
m Fault = adjudged/hypothesized cause of the error

Fault > Error - Failure

m Failure of one system is fault for another system
(programmers, tools, operators, etc.)

.. > Fault > Error > Failure-> Fault > Error > Failure> ...

= Distinction is hard, so make it at the level at which
the fault is meant to be prevented or tolerated

‘September 13, 2001 ©52944 : Recovery Oriented Computing 5

Bugs = Software Faults

m Heisenbugs = intermittent design/implementation
faults; the more you look for them, the more elusive
they become

m Bohrbugs = permanent design/implementation faults
(solid, easily identified)

Note:
e Intermittent fault < internal
e Transient fault < external

September 13, 2001 €S2044 Recovery Oriented Computing 6




Failures

m Byzantine failure = system returns wrong values
(named after Byzantine Empire)

m Stopping failure = system activity no longer
perceived by user, delivers constant value service

m Omission failure = stopping failure w/ no service
being delivered at all

m Crash failure = persistent omission failure

Crash < Omission < Stopping < Byzantine

‘September 13, 2001 ©52944 : Recovery Oriented Computing 7

Classification

= Benign failure: consequences ~ potential benefit from up-ness
(same order of magnitude)

= Catastrophic failure: consequences >> potential benefit from
up-ness

m Fail-safe system = only benign failures

m Fail-stop system = only stopping failures (sometimes
equivalent to fail-stop)

m Fail-silent system = only crash failures

September 13, 2001 ©S2944 : Recovery Oriented Computing

Statistical Definitions

= Reliability: random variable R(t) = probability that system does
not fail before time t

= Mean time to failure: MTTF = E[R(Y) ]
(how long expect system to work w/out failure)

= |nstantaneous availability: A(t) = probability that system is up
at time t ; then Availability = lim A(t)
t-> inf

Techniques

up down up down .
t —t t } time
Failure Repair
MTTF MTTF
Availability = ——— =
MTTF + MTTR MTBF

‘September 13, 2001 ©5294.4 : Recovery Oriented Computing

m  Three basic approach to faults/errors/failures:

1. Fault Prevention
2. Fault Containment
3. Fault Tolerance

September 13, 2001 €S2044: Recovery Orieted Computing

1. Fault Prevention

m Better Software Engineering
m Formal Methods
m Language-Based Mechanisms

m Fault Forecasting

‘September 13, 2001 ©52944 : Recovery Oriented Computing

2. Fault Containment

= By Design
m Language-Based Mechanisms

= Virtualization

September 13, 2001 €S2044 Recovery Oriented Computing




3. Fault Tolerance

m Redundancy
m Recovery

m Diversity

‘September 13, 2001 ©52944 : Recovery Oriented Computing 13

Overview

1. Fault Prevention
.
e Formal Methods
e Language-Based Mechanisms
e Fault Forecasting

2. Fault Containment
e By Design
e Language-Based Mechanisms
e Virtualization

3. Fault Tolerance
e Redundancy
e Recovery
e Diversity

September 13, 2001 ©S2944 : Recovery Oriented Computing 14

Formal Methods

= |dea came from traditional engineering disciplines

m Specify and model behavior of a system, and
mathematically verify that its design and
implementation satisfy functional and safety regs.

e L1: formally specify the system (using logic or spec language)

e L2: spec at 2+ levels; pencil-and-paper proof that concrete
levels imply the more abstract levels (e.g., implem. - design)

e L3: spec and then convince mechanical theorem prover

m Problems:
e Specs and mechanical prover must be 100% correct
e Large, complex systems are impossible to verify

‘September 13, 2001 ©5294.4 : Recovery Oriented Computing 15

Example: Proof-Carrying Code

m Code producer generates formal safety proof (e.g., firstorder
logic proof for DEC Alpha machine code)

m Code consumer verifies validity of proof with a fast checker

= Advantages:

e Shifts burden of proof to code producer

e Only need to trust proof checker

e Faster than an interpreter

e PCC maintains safety, even if tampered with
= Disadvantages:

e Must trust proof checker and safety policy

e Hard to prove interesting properties automatically
e Safety is not sufficient for dependability

September 13, 2001 €S2044: Recovery Orieted Computing 16

Static Program Analysis

m Inspect source code, manually or automatically, and
find potential bugs (e.g., compilers)

m Example: metacompilation

e Programmer provides Cdike gcc extensions to automatically
check or optimize their code; get compiled together w/ src

e Extensions express accepted rules:
Syscall must check user pointers before using them

Don't call blocking function with interrupts disabled
Disabled interrupts must eventually be re-enabled

e Found couple thousand bugs in Linux, OpenBSD, and Xok

e Latest tool: infer these rules automatically, thus not
requiring the programmer to write them

‘September 13, 2001 ©52944 : Recovery Oriented Computing Bt

Overview

1. Fault Prevention
.
.
e Language-Based Mechanisms
e Fault Forecasting

2. Fault Containment
e By Design
e Language-Based Mechanisms
e Virtualization

3. Fault Tolerance
e Redundancy
e Recovery
e Diversity

September 13, 2001 €S2044 Recovery Oriented Computing 18




Restrictive Languages

To limit the damage a program can do, limit what can be
expressed in the source language (“if you can’t say it, nobody
will do it”)

Typical restrictions
e Control flow (e.g., no backward branching - finite exec)
e Type safety, no pointers

= |ssues:
e Language may be too limited and awkward
e Dependable code must be written in that language
e Binaries must be tamper-evident
o Assumes all dev tools are trusted and correct

m Example: SPIN and user-provided kernel extensions written in
Modula-3 (type-safe and OO); extensions signed by compiler

Overview

1. Fault Prevention
.
.
.

e Fault Forecasting

2. Fault Containment
e By Design
e Language-Based Mechanisms
e Virtualization

3. Fault Tolerance
e Redundancy
e Recovery

e Diversity
Fault Forecasting Overview

= Monitor system and infer when it has entered an area of
its state space where it's prone to failure; then fix it

m Internal monitoring: ISTORE
e Incrementally scaleable, self-maintaining storage appliance
e Sensors monitor system and communicate changes

e Software triggers (predicates over system state) get evaluated
when something changes and signal potential problems

o Adaptation code gets invoked to deal with anomalies

m External monitoring: Internet services
e Statistically model system/network performance behavior
e A deviation from that model == sign of impending fault

‘September 13, 2001 ©5294.4 : Recovery Oriented Computing 2

2. Fault Containment
.
e Language-Based Mechanisms
e Virtualization

3. Fault Tolerance
e Redundancy
e Recovery
e Diversity

September 13, 2001 €S2044: Recovery Orieted Computing

Sandboxing

m |solate user program in a sandbox where it can execute without
harming anything outside the sandbox

= Sandbox = fault domain = code + data segment, suitably
aligned

= Configure MMU to fault on accesses/jumps outside of fault
domain

= Rewrite the binary to mask off high order bits on addresses to
keep them within fault domain

= Redirect system calls through a protected jump table to an
arbitrator

‘September 13, 2001 ©52944 : Recovery Oriented Computing 2

Dynamic Dataflow Analysis

= Deny potentially unsafe operations

= Quarantine data that may be contaminated
(taintperl)

print STDERR “Enter file name:”;

$x = <STDI N>; # tainted

$y = “/etc/hosts”; # clean

$z = “$sysdir/$x"; # transitively tainted
systen(“cat $z"); # not permitted

systen(“cat $y”"); # K

September 13, 2001 €S2044 Recovery Oriented Computing




Overview Virtualization

L m VM = sw abstraction of a machine on top of another machine
= Can virtualize hw or a language exec environment

. = Advantages:

Guest can virtualize resources differently from host

Excellent way to test and debug (incl. with altered privileges)
Run distinct versions of various software, for diversification

Create sophisticated sanboxes (e.g., for classified information
processing); VM isolation is simple to understand

2. Fault Containment

e Virtualization
Intercept, control, and monitor access to all resources; could infer

3. Fault Tolerance when application is about to fail
®  Redundancy » Problems:
° R.ecovéry e Must rely on integrity and correctness of VM
e Diversity
Septnber 13,2001 24 Resowery Orentd Compusing = Seplnber 13,2001 2944 Recovery Ot Computing »
Virtualization Examples Overview
m 1967: IBM introduces the S/360 model 67 w/ virtual L

memory; TSS subsystem provides the illusion of
multiple 360’s w/out virtual memory

These days: S/390 can run Linux in 10,000s of
concurrent VMs (1,000s on production systems) 2

m |BM’s latest offering: z/VM for the z900 mainframe

m Other:
e VMWare’s x86 VM for Windows and Linux 3. Fault Tolerance
e RealPC and VirtualPC to simulate x86 on Macs e Redundancy
e of course... VM ® Recovery
e Diversity
Septernoer 13,2001 52044 Recovery Orinte Compesing 2 Septne 13,2001 CS244: Recovery Orented Computing =
Information/Data Redundancy Processor Redundancy
m CRC, EDC/ECC codes, parity checks, etc. m Simple example: Triple Module Redundancy
o o Decreased MTTF; so why is it a good idea?
m Replication . ’ . L
) e Bonus: single point of failure to something simple (a voter)
e Primary/Secondary copy
e Multi-node replication m Hot/Cold standy and failover (e.g., Tandem Non-Stop)

e Majority voting
o Weighted voting
e Geographical replication: ship transaction log off-site m Distributed systems problems:

m Clusters (combines data with processor redundancy)

e Manageability
e How to reach agreement ?

‘September 13, 2001 ©52944 : Recovery Oriented Computing 2 September 13, 2001 €S2044 Recovery Oriented Computing EY




Distributed Consensus

= Nodes can fail (stop or Byzantine); good nodes need to agree
on a value (e.g., time of transaction commit)

= Most famous anthropomorphism in distributed systems:
Byzantine Generals problem (Lamport)

e City surrounded by Byzantine army; attack or retreat? When? Must
do it at the same time!

Traitorous generals want to deceive loyal generals

Can use oral or written (signed messages)
What is the max. number of traitors that can be tolerated?

Unsigned messages: can tolerate strictly less than 1/3

Signed messages: can tolerate any number of faults

Impossibility of Consensus

= Fundamental result, proved in 1985

= Asynchronous system (can make no assumptions about relative
speeds of processes) w/ reliable communication

m At most one process can fail (stop or Byzantine)

= Impossible to guarantee consensus in finite time

= Basic reason: cannot distinguish failed nodes from slow nodes
= Consequence: cannot tolerate any fault in async system

= In real world: place upper bounds on communication and
processing time; if slow, consider node faulty

Sepember 13,2001 0944 Remvey Oretes Compating @ St 13,2001 G944 Revry Orerted Copating @
Temporal Redundancy Overview
m Perform computation several times, use comparator L
.
to generate result
.
m In face of failure, repeat computation :
e At the basis of reliable message delivery through retransmit
2.

3. Fault Tolerance

e Recovery
e Diversity
‘Septermber 13, 2001 CS2944: Recovery Oriented Computing £ September 13, 2001 ©52944: Recovery Oriented Computing 34

m Backward recovery: return system to previous,
known-good state (e.g., checkpoint-restart, rollback,
reboot)

m Forward recovery: take system to new, good state
from where it can continue operating, potentially in
degraded mode (e.g., app-specific exception
handling)

m Compare to: compensation , in which erroneous state
is sufficiently redundant to allow continued operation
(e..g, compensating transactions, failover, etc.)

‘September 13, 2001 ©52944 : Recovery Oriented Computing

= Atomicity = all-or-nothing
Consistent = only correct state changes
lsolated = as if running alone, even if concurrent txs
Durable = committed changes are permanent

= Transaction = unit of work that is ACID

m Write-ahead logging for atomicity and durability

= Hairy algs. for logging and recovery

m Distributed transactions & recovery management

= Multiphase commits

September 13, 2001 €S2044 Recovery Oriented Computing E3




Pros and Cons of ACID

m Advantages:
e Atomicity is extremely appealing
e Unambiguous notion of fail-stop
e Easy and simply to understand and reason about
e Excellent building block for complex interactions

m Disadvantages:
e Consistency protocols are hard to get right (design & impl.)
e Locking and scheduling; deadlock detection

e Recovery code — worst kind of code: almost never exercised,
but absolutely critical when called

e Performance and correctness antagonistic

‘September 13, 2001 ©52944 : Recovery Oriented Computing K4

Restart-Based Techniques

m One of the largest sources of unavailability:
intermittent bugs and transient faults

m Structure systems such that they can be restarted at
various fine grain levels without adverse effects

m Use prophylactic and reactive restarts to cure failure

= Properties:
e Unequivocally returns system to its start state
e High confidence way to reclaim stale and leaked resources
e Easy to understand and employ

‘September 13, 2001 CS294-4 : Recovery Oriented Computing 38
Overview Diversity

L = N-version programming (govt.-funded critical

o

. systems)

: m More realistic variant: deploy a collection of different

releases from various software vendors, to avoid

2.

3. Fault Tolerance
o
o

e Diversity

‘September 13, 2001 ©5294.4 : Recovery Oriented Computing £

similar fault patterns

m Automated mutation of software

September 13, 2001 €S2044: Recovery Orieted Computing

Overview

1. Fault Prevention
e Better Software Engineering
e Formal Methods
e LanguageBased Mechanisms
e Fault Forecasting

2. Fault Containment
e By Design
e LanguageBased Mechanisms
e Virtualization

3. Fault Tolerance
e Redundancy
® Recovery
e Diversity

‘September 13, 2001 ©52944 : Recovery Oriented Computing a1




