
1

Dependability Overview:Dependability Overview:
Vocabulary and TechniquesVocabulary and Techniques

George CandeaGeorge Candea
Stanford UniversityStanford University

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 2

What Is Dependability ?What Is Dependability ?

nn Reliability = continuous functioning w/out failureReliability = continuous functioning w/out failure

nn Availability = readiness for usageAvailability = readiness for usage

nn Safety = avoid catastrophic effects on environmentSafety = avoid catastrophic effects on environment

nn Security = prevent unauthorized access and/or Security = prevent unauthorized access and/or
handling of informationhandling of information

= trustworthiness of a computer system
with regard to the services it provides

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 3

Historical EvolutionHistorical Evolution

1.1. Make things work and keep them working Make things work and keep them working àà reliabilityreliability
BabbageBabbage’’s analytical engines analytical engine
MTBF(vacuumMTBF(vacuum tubes) tubes) ˜̃ computation timecomputation time

2.2. Widespread use (accounting, payroll, inventory, billing) Widespread use (accounting, payroll, inventory, billing)
àà availabilityavailability

3.3. Critical applications (FAA, earlyCritical applications (FAA, early --warning, nuclear power warning, nuclear power
plants, aircraft, ABS) plants, aircraft, ABS) àà safetysafety

4.4. Distributed systems Distributed systems àà increased node accessibility and increased node accessibility and
vulnerability vulnerability àà securitysecurity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 4

Some DefinitionsSome Definitions

nn Specification = agreed description of a Specification = agreed description of a swsw system’s expected system’s expected
serviceservice

nn Environment = any external entity that interacts w/ system Environment = any external entity that interacts w/ system
(present/past/future). Beware of different system boundaries.(present/past/future). Beware of different system boundaries.

nn User = that part of the environment that provides inputs to the User = that part of the environment that provides inputs to the
service and/or receives outputsservice and/or receives outputs

nn Function = what the system Function = what the system should doshould do

nn Behavior = what the system Behavior = what the system does dodoes do
(hence, service = abstraction of system behavior)(hence, service = abstraction of system behavior)

nn Structure = what makes the system Structure = what makes the system do what it doesdo what it does

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 5

From Fault to FailureFrom Fault to Failure

nn Failure = deviation of system’s service from its specFailure = deviation of system’s service from its spec

nn Error = the part of system state that is liableError = the part of system state that is liable

nn Fault = adjudged/hypothesized cause of the errorFault = adjudged/hypothesized cause of the error

Fault à Error à Failure

nn Distinction is hard, so make it at the level at which Distinction is hard, so make it at the level at which
the fault is meant to be prevented or toleratedthe fault is meant to be prevented or tolerated

nn Failure of one system is fault for another system Failure of one system is fault for another system
(programmers, tools, operators, etc.)(programmers, tools, operators, etc.)

…à Fault à Error à Failure à Fault à Error à Failure à …

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 6

Bugs = Software FaultsBugs = Software Faults

nn HeisenbugsHeisenbugs = intermittent design/implementation = intermittent design/implementation
faults; the more you look for them, the more elusive faults; the more you look for them, the more elusive
they becomethey become

nn BohrbugsBohrbugs = permanent design/implementation faults = permanent design/implementation faults
(solid, easily identified)(solid, easily identified)

Note:Note:
ll Intermittent fault Intermittent fault ßß internalinternal

ll Transient fault Transient fault ßß externalexternal

2

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 7

FailuresFailures

nn Byzantine failure = system returns wrong values Byzantine failure = system returns wrong values
(named after Byzantine Empire)(named after Byzantine Empire)

nn Stopping failure = system activity no longer Stopping failure = system activity no longer
perceived by user, delivers constant value serviceperceived by user, delivers constant value service

nn Omission failure = stopping failure w/ no service Omission failure = stopping failure w/ no service
being delivered at allbeing delivered at all

nn Crash failure = persistent omission failureCrash failure = persistent omission failure

Crash < Omission < Stopping < Byzantine

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 8

ClassificationClassification

nn Benign failure: Benign failure: consequences consequences ̃̃ potential potential benefit from upbenefit from up--ness ness
(same order of magnitude)(same order of magnitude)

nn Catastrophic failure: consequences >> potential benefit from Catastrophic failure: consequences >> potential benefit from
upup--nessness

nn FailFail--safe system = only benign failuressafe system = only benign failures

nn FailFail--stop system = only stopping failuresstop system = only stopping failures (sometimes (sometimes
equivalent to failequivalent to fail--stop)stop)

nn FailFail--silent system = only crash failuressilent system = only crash failures

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 9

Statistical DefinitionsStatistical Definitions

nn Reliability: random variable Reliability: random variable R(tR(t)) = probability that system does = probability that system does
not fail before time not fail before time tt

nn Mean time to failure: Mean time to failure: MTTF = MTTF = E[E[R(tR(t))]]
(how long expect system to work w/out failure)(how long expect system to work w/out failure)

nn Instantaneous availability: Instantaneous availability: A(tA(t)) = probability that system is up = probability that system is up
at time at time tt ; then Availability = ; then Availability = limlim A(tA(t))

t à inf

MTTF MTTF MTTFMTTF
Availability = Availability = —————————————— = = ——————

MTTF + MTTR MTBFMTTF + MTTR MTBF

time
up updown down

FailureFailure RepairRepair

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 10

TechniquesTechniques

nn Three basic approach to faults/errors/failures:Three basic approach to faults/errors/failures:

1.1. Fault PreventionFault Prevention

2.2. Fault ContainmentFault Containment

3.3. Fault ToleranceFault Tolerance

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 11

1. Fault Prevention1. Fault Prevention

nn Better Software EngineeringBetter Software Engineering

nn Formal MethodsFormal Methods

nn LanguageLanguage--Based MechanismsBased Mechanisms

nn Fault ForecastingFault Forecasting

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 12

2. Fault Containment2. Fault Containment

nn By DesignBy Design

nn LanguageLanguage--Based MechanismsBased Mechanisms

nn VirtualizationVirtualization

3

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 13

3. Fault Tolerance3. Fault Tolerance

nn RedundancyRedundancy

nn RecoveryRecovery

nn DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 14

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 15

Formal MethodsFormal Methods

nn Idea came from traditional engineering disciplinesIdea came from traditional engineering disciplines

nn Specify and model behavior of a system, and Specify and model behavior of a system, and
mathematically verify that its design and mathematically verify that its design and
implementation satisfy functional and safety implementation satisfy functional and safety reqsreqs..
ll L1: formally specify the system (using logic or spec language)L1: formally specify the system (using logic or spec language)
ll L2: spec at 2+ levels; pencilL2: spec at 2+ levels; pencil--andand--paper proof that concrete paper proof that concrete

levels imply the more abstract levels (e.g., levels imply the more abstract levels (e.g., implemimplem. . àà design)design)
ll L3: spec and then convince mechanical theorem L3: spec and then convince mechanical theorem proverprover

nn Problems:Problems:
ll Specs and mechanical Specs and mechanical proverprover must be 100% correctmust be 100% correct

ll Large, complex systems are impossible to verifyLarge, complex systems are impossible to verify

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 16

Example: ProofExample: Proof--Carrying CodeCarrying Code

nn Code producer generates formal safety proof (e.g., firstCode producer generates formal safety proof (e.g., first--order order
logic proof for DEC Alpha machine code)logic proof for DEC Alpha machine code)

nn Code consumer verifies validity of proof with a fast checkerCode consumer verifies validity of proof with a fast checker

nn Advantages:Advantages:
ll Shifts burden of proof to code producerShifts burden of proof to code producer

ll Only need to trust proof checkerOnly need to trust proof checker

ll Faster than an interpreterFaster than an interpreter

ll PCC maintains safety, even if tampered withPCC maintains safety, even if tampered with

nn Disadvantages:Disadvantages:
ll Must trust proof checker and safety policyMust trust proof checker and safety policy

ll Hard to prove interesting properties automaticallyHard to prove interesting properties automatically

ll Safety is not sufficient for dependabilitySafety is not sufficient for dependability

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 17

Static Program AnalysisStatic Program Analysis

nn Inspect source code, manually or automatically, and Inspect source code, manually or automatically, and
find potential bugs (e.g., compilers)find potential bugs (e.g., compilers)

nn Example: Example: metacompilationmetacompilation
ll Programmer provides CProgrammer provides C--like like gccgcc extensions to automatically extensions to automatically

check or optimize their code; get compiled together w/ check or optimize their code; get compiled together w/ srcsrc
ll Extensions express accepted rules:Extensions express accepted rules:

SyscallSyscall must check user pointers before using themmust check user pointers before using them
Don’t call blocking function with interrupts disabledDon’t call blocking function with interrupts disabled
DisabledDisabled interrupts must eventually be reinterrupts must eventually be re--enabledenabled

ll Found couple thousand bugs in Linux, Found couple thousand bugs in Linux, OpenBSDOpenBSD, and , and XokXok
ll Latest tool: infer these rules automatically, thus not Latest tool: infer these rules automatically, thus not

requiring the programmer to write themrequiring the programmer to write them

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 18

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

4

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 19

Restrictive LanguagesRestrictive Languages

nn To limit the damage a program can do, limit what can be To limit the damage a program can do, limit what can be
expressed in the source language (“if you can’t say it, nobody expressed in the source language (“if you can’t say it, nobody
will do it”)will do it”)

nn Typical restrictionsTypical restrictions
ll Control flow (e.g., no backward branching Control flow (e.g., no backward branching àà finite exec)finite exec)
ll Type safety, no pointersType safety, no pointers

nn Issues:Issues:
ll Language may be too limited and awkwardLanguage may be too limited and awkward
ll Dependable code must be written in that languageDependable code must be written in that language
ll Binaries must be tamperBinaries must be tamper--evidentevident
ll Assumes all dev tools are trusted and correctAssumes all dev tools are trusted and correct

nn Example: SPIN and userExample: SPIN and user--provided kernel extensions written in provided kernel extensions written in
ModulaModula--3 (type3 (type--safe and OO); extensions signed by compiler safe and OO); extensions signed by compiler

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 20

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 21

Fault ForecastingFault Forecasting

nn Monitor system and infer when it has entered an area of Monitor system and infer when it has entered an area of
its state space where it’s prone to failure; then fix itits state space where it’s prone to failure; then fix it

nn Internal monitoring: ISTOREInternal monitoring: ISTORE
ll Incrementally scaleable, selfIncrementally scaleable, self --maintaining storage appliancemaintaining storage appliance
ll Sensors monitor system and communicate changesSensors monitor system and communicate changes

ll Software triggers (predicates over system state) get evaluated Software triggers (predicates over system state) get evaluated
when something changes and signal potential problemswhen something changes and signal potential problems

ll Adaptation code gets invoked to deal with anomaliesAdaptation code gets invoked to deal with anomalies

nn External monitoring: Internet servicesExternal monitoring: Internet services
ll Statistically model system/network performance behaviorStatistically model system/network performance behavior
ll A deviation from that model == sign of impending faultA deviation from that model == sign of impending fault

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 22

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 23

SandboxingSandboxing

nn Isolate user program in a sandbox where it can execute without Isolate user program in a sandbox where it can execute without
harming anything outside the sandboxharming anything outside the sandbox

nn Sandbox = fault domain = code + data segment, suitably Sandbox = fault domain = code + data segment, suitably
alignedaligned

nn Configure MMU to fault on accesses/jumps outside of fault Configure MMU to fault on accesses/jumps outside of fault
domaindomain

nn Rewrite the binary to mask off high order bits on addresses to Rewrite the binary to mask off high order bits on addresses to
keep them within fault domainkeep them within fault domain

nn Redirect system calls through a protected jump table to an Redirect system calls through a protected jump table to an
arbitratorarbitrator

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 24

Dynamic Dataflow AnalysisDynamic Dataflow Analysis

nn Deny potentially unsafe operationsDeny potentially unsafe operations

nn Quarantine data that may be contaminated Quarantine data that may be contaminated
((taintperltaintperl))

print STDERR “Enter file name:”;
$x = <STDIN>; # tainted
….
$y = “/etc/hosts”; # clean
$z = “$sysdir/$x”; # transitively tainted
system(“cat $z”); # not permitted
system(“cat $y”); # OK

5

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 25

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 26

VirtualizationVirtualization

nn VM = VM = swsw abstraction of a machine on top of another machineabstraction of a machine on top of another machine

nn Can Can virtualizevirtualize hw or a language exec environmenthw or a language exec environment

nn Advantages:Advantages:
ll Guest can Guest can virtualizevirtualize resources differently from hostresources differently from host

ll Excellent way to test and debug (incl. with altered privileges)Excellent way to test and debug (incl. with altered privileges)

ll Run distinct versions of various software, for diversificationRun distinct versions of various software, for diversification

ll Create sophisticated Create sophisticated sanboxessanboxes (e.g., for classified information (e.g., for classified information
processing); VM isolation is simple to understandprocessing); VM isolation is simple to understand

ll Intercept, control, and monitor access to all resources; could iIntercept, control, and monitor access to all resources; could i nfer nfer
when application is about to failwhen application is about to fail

nn Problems:Problems:
ll Must rely on integrity and correctness of VMMust rely on integrity and correctness of VM

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 27

Virtualization ExamplesVirtualization Examples

nn 1967: IBM introduces the S/360 model 67 w/ virtual 1967: IBM introduces the S/360 model 67 w/ virtual
memory; TSS subsystem provides the illusion of memory; TSS subsystem provides the illusion of
multiple 360’s w/out virtual memorymultiple 360’s w/out virtual memory

nn These days: S/390 can run Linux in 10,000s of These days: S/390 can run Linux in 10,000s of
concurrent concurrent VMsVMs (1,000s on production systems)(1,000s on production systems)

nn IBM’s latest offering: z/VM for the z900 mainframeIBM’s latest offering: z/VM for the z900 mainframe

nn Other:Other:
ll VMWare’sVMWare’s x86 VM for Windows and Linuxx86 VM for Windows and Linux
ll RealPCRealPC and and VirtualPCVirtualPC to simulate x86 on Macsto simulate x86 on Macs
ll of course… JVMof course… JVM

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 28

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 29

Information/Data RedundancyInformation/Data Redundancy

nn CRC, EDC/ECC codes, parity checks, etc.CRC, EDC/ECC codes, parity checks, etc.

nn ReplicationReplication
ll Primary/Secondary copyPrimary/Secondary copy

ll MultiMulti--node replicationnode replication

ll Majority votingMajority voting

ll Weighted votingWeighted voting

ll Geographical replication: ship transaction log offGeographical replication: ship transaction log off--sitesite

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 30

Processor RedundancyProcessor Redundancy

nn Simple example: Triple Module RedundancySimple example: Triple Module Redundancy
ll Decreased MTTF; so why is it a good idea?Decreased MTTF; so why is it a good idea?

ll Bonus: single point of failure to something simple (a voter)Bonus: single point of failure to something simple (a voter)

nn Hot/Cold Hot/Cold standystandy and failover (e.g., Tandem Nonand failover (e.g., Tandem Non--Stop)Stop)

nn Clusters (combines data with processor redundancy)Clusters (combines data with processor redundancy)

nn Distributed systems problems:Distributed systems problems:

ll ManageabilityManageability

ll How to reach agreement ?How to reach agreement ?

6

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 31

Distributed ConsensusDistributed Consensus

nn Nodes can fail (stop or Byzantine); good nodes need to agree Nodes can fail (stop or Byzantine); good nodes need to agree
on a value (e.g., time of transaction commit)on a value (e.g., time of transaction commit)

nn Most famous anthropomorphism in distributed systems: Most famous anthropomorphism in distributed systems:
Byzantine Generals problem (Byzantine Generals problem (LamportLamport))
ll City surrounded by Byzantine army; attack or retreat? When? MustCity surrounded by Byzantine army; attack or retreat? When? Must

do it at the same time!do it at the same time!

ll Traitorous generals want to deceive loyal generalsTraitorous generals want to deceive loyal generals

ll Can use oral or written (signed messages)Can use oral or written (signed messages)

ll What is the max. number of traitors that can be tolerated?What is the max. number of traitors that can be tolerated?

ll Unsigned messages: can tolerate strictly less than 1/3Unsigned messages: can tolerate strictly less than 1/3

ll Signed messages: can tolerate any number of faultsSigned messages: can tolerate any number of faults

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 32

Impossibility of ConsensusImpossibility of Consensus

nn Fundamental result, proved in 1985Fundamental result, proved in 1985

nn Asynchronous system (can make no assumptions about relative Asynchronous system (can make no assumptions about relative
speeds of processes) w/ reliable communicationspeeds of processes) w/ reliable communication

nn At most one process can fail (stop or Byzantine)At most one process can fail (stop or Byzantine)

nn Impossible to guarantee consensus in finite timeImpossible to guarantee consensus in finite time

nn Basic reason: cannot distinguish failed nodes from slow nodesBasic reason: cannot distinguish failed nodes from slow nodes

nn Consequence: cannot tolerate any fault in Consequence: cannot tolerate any fault in asyncasync systemsystem

nn In real world: place upper bounds on communication and In real world: place upper bounds on communication and
processing time; if slow, consider node faultyprocessing time; if slow, consider node faulty

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 33

Temporal RedundancyTemporal Redundancy

nn Perform computation several times, use comparator Perform computation several times, use comparator
to generate resultto generate result

nn In face of failure, repeat computationIn face of failure, repeat computation

ll At the basis of reliable message delivery through retransmitAt the basis of reliable message delivery through retransmit

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 34

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 35

RecoveryRecovery

nn Backward recovery: return system to previous, Backward recovery: return system to previous,
knownknown--good state (e.g., checkpointgood state (e.g., checkpoint--restart, rollback, restart, rollback,
reboot)reboot)

nn Forward recovery: take system to new, good state Forward recovery: take system to new, good state
from where it can continue operating, potentially in from where it can continue operating, potentially in
degraded mode (e.g., appdegraded mode (e.g., app--specific exception specific exception
handling)handling)

nn Compare to: Compare to: compensationcompensation , in which erroneous state , in which erroneous state
is sufficiently redundant to allow continued operation is sufficiently redundant to allow continued operation
((e..ge..g, compensating transactions, failover, etc.), compensating transactions, failover, etc.)

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 36

ACIDACID

nn AAtomicity = alltomicity = all--oror--nothingnothing
CConsistent = only correct state changesonsistent = only correct state changes
IIsolated = as if running alone, even if concurrent solated = as if running alone, even if concurrent txstxs
DDurable = committed changes are permanenturable = committed changes are permanent

nn Transaction = unit of work that is ACIDTransaction = unit of work that is ACID

nn WriteWrite--ahead logging for atomicity and durabilityahead logging for atomicity and durability

nn Hairy Hairy algsalgs. for logging and recovery. for logging and recovery

nn Distributed transactions & recovery managementDistributed transactions & recovery management

nn Multiphase commitsMultiphase commits

7

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 37

Pros and Cons of ACIDPros and Cons of ACID

nn Advantages:Advantages:
ll Atomicity is extremely appealingAtomicity is extremely appealing

ll Unambiguous notion of failUnambiguous notion of fail --stopstop
ll Easy and simply to understand and reason aboutEasy and simply to understand and reason about
ll Excellent building block for complex interactionsExcellent building block for complex interactions

nn Disadvantages:Disadvantages:
ll Consistency protocols are hard to get right (design & Consistency protocols are hard to get right (design & implimpl.).)
ll Locking and scheduling; deadlock detectionLocking and scheduling; deadlock detection

ll Recovery code Recovery code –– worst kind of code: almost never exercised, worst kind of code: almost never exercised,
but absolutely critical when calledbut absolutely critical when called

ll Performance and correctness antagonisticPerformance and correctness antagonistic

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 38

RestartRestart--Based TechniquesBased Techniques

nn One of the largest sources of unavailability: One of the largest sources of unavailability:
intermittent bugs and transient faultsintermittent bugs and transient faults

nn Structure systems such that they can be restarted at Structure systems such that they can be restarted at
various fine grain levels without adverse effectsvarious fine grain levels without adverse effects

nn Use prophylactic and reactive restarts to cure failureUse prophylactic and reactive restarts to cure failure

nn Properties:Properties:
ll Unequivocally returns system to its start stateUnequivocally returns system to its start state

ll High confidence way to reclaim stale and leaked resourcesHigh confidence way to reclaim stale and leaked resources

ll Easy to understand and employEasy to understand and employ

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 39

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 40

DiversityDiversity

nn NN--version programming (govt.version programming (govt.--funded critical funded critical
systems)systems)

nn More realistic variant: deploy a collection of different More realistic variant: deploy a collection of different
releases from various software vendors, to avoid releases from various software vendors, to avoid
similar fault patternssimilar fault patterns

nn Automated mutation of softwareAutomated mutation of software

CS294-4 : Recovery Oriented ComputingSeptember 13, 2001 41

OverviewOverview

1.1. Fault PreventionFault Prevention
ll Better Software EngineeringBetter Software Engineering

ll Formal MethodsFormal Methods

ll LanguageLanguage--Based MechanismsBased Mechanisms

ll Fault ForecastingFault Forecasting

2.2. Fault ContainmentFault Containment
ll By DesignBy Design
ll LanguageLanguage--Based MechanismsBased Mechanisms

ll VirtualizationVirtualization

3.3. Fault ToleranceFault Tolerance
ll RedundancyRedundancy

ll RecoveryRecovery

ll DiversityDiversity

