I/O ED and Recovery

NO ED standards for PCI
- RS/AIX custom design to circumvent

IBT is channel-based
- Like S/390
- Defined errors
- Defined robust checking & isolation

LEVEL THE PLAYING FIELD
Memory Hierarchy Fault Tolerance

Memory
- (72, 64) SEC/DED ECC
 - One bit per chip
- Background scrubbing
- Dynamic chip sparing

Level 2 Cache
- (72, 64) SEC/DED ECC
- Line/directory deletes
- Line sparing

Level 1 Cache
- Parity Protected
- Store-through to L2
- ECC'd Store Buffer on uP
- Line delete/sparing
CP Error Detection & Recovery

Duplicated:
- Complex controls
- Arithmetic dataflow

Shared:
- Cache controls
- Cache data/address flow
- R-Unit

- Check all state updates
- Preserve known good state

If error
1. Stop state updates
2. Refresh from saved state
3. Restart CPU

If error persists
1. Extract saved state (SE)
2. Load into spare CPU
3. Start spare CPU
MTTHardware Repair = 8 months
81-83% of repairs are concurrent

TYPICAL REPAIR SCENARIO

13-15% of repairs are deferable
2-6% of repairs are app loss: MTTAL = 24 years
zSeries Error Reporting

~2 week interval "call home" recovery data

Suppose CP hard logic (not array) fails caused app loss:
MTTAL from 24 yrs to 11 yrs

Suppose array (L1, L2, BHT) fails also caused app loss:
MTTAL from 11 yrs to 5 yrs
S/390 Evolution

S/390 uses same technology building blocks for soft and hard error recovery
- Enhanced over past 35 years

IT'S NOT THE ONLY OPTION
- Beginning afresh, might land elsewhere
- Need to be driven by current conditions
 - Technology
 - Workload

IT'S EFFICIENT & EFFECTIVE FOR S/390

- Soft error recovery
- Hard error recovery
- Instruction retry
- CPU Sparing PAF
- Circuit-level detection
- uArch checkpoint
Challenges for the 00s

- Increased importance of firmware
- Circuit failure mechanisms
- State encapsulation
- On-the-fly change
- Dynamic resource allocation
- Configuration validation