
Dependability Lessons fromDependability Lessons from
InternettyInternetty Systems: An OverviewSystems: An Overview

Stanford University CS 444A / UC Berkeley CS 294Stanford University CS 444A / UC Berkeley CS 294--44
RecoveryRecovery--Oriented Computing,Oriented Computing, Autumn 01Autumn 01

Armando Fox, fox@Armando Fox, fox@cscs..stanfordstanford..eduedu

© 2001
Stanford

Concepts OverviewConcepts Overview
�� Trading consistency for availability: Harvest, yield, and the DQTrading consistency for availability: Harvest, yield, and the DQ

principle; TACTprinciple; TACT

�� Runtime fault containment: virtualization and its usesRuntime fault containment: virtualization and its uses

�� Orthogonal mechanisms: timeouts, endOrthogonal mechanisms: timeouts, end--toto--end checks, statistical end checks, statistical
detection of performance failuresdetection of performance failures

�� State management, hard and soft stateState management, hard and soft state

�� Revealed truths: endRevealed truths: end--toto--end argument (Saltzer), software pitfalls end argument (Saltzer), software pitfalls
(Leveson), and their application to dependability(Leveson), and their application to dependability

�� Many, many supplementary readings about these topicsMany, many supplementary readings about these topics

© 2001
Stanford

Consistency/Availability Tradeoff: CAPConsistency/Availability Tradeoff: CAP

CAP principle (this formulation due to Brewer): CAP principle (this formulation due to Brewer):

�� In a networked/distributed storage system, you can have In a networked/distributed storage system, you can have
any 2 of consistency, high availability, partition resilience.any 2 of consistency, high availability, partition resilience.
�� Internet systems favor A and P over CInternet systems favor A and P over C

�� Databases favor C and A over PDatabases favor C and A over P

�� Surely other examplesSurely other examples

�� Generalization: can you trade Generalization: can you trade somesome of one for more of of one for more of
another? (hint: yes)another? (hint: yes)

© 2001
Stanford

Consistency/Availability: Harvest/YieldConsistency/Availability: Harvest/Yield

�� Yield:Yield: probability of completing a queryprobability of completing a query

�� Harvest:Harvest: (application(application--specific) fidelity of the answerspecific) fidelity of the answer
�� Fraction of data represented?Fraction of data represented?

�� Precision?Precision?

�� Semantic proximity?Semantic proximity?

�� Harvest/yield questions:Harvest/yield questions:
�� When can we trade harvest for yield to improve availability?When can we trade harvest for yield to improve availability?

�� How to measure harvest “threshold” below which response is not How to measure harvest “threshold” below which response is not
useful?useful?

�� Application decomposition to improve “degradation Application decomposition to improve “degradation
tolerance” (and therefore availability)tolerance” (and therefore availability)

© 2001
Stanford

Generalization: TACT (Yu & Vahdat)Generalization: TACT (Yu & Vahdat)

�� Model: distributed database using antiModel: distributed database using anti--entropy to entropy to
approach consistencyapproach consistency

�� “Conit” captures app“Conit” captures app--specific consistency unit (think: ADU specific consistency unit (think: ADU
of consistency)of consistency)
�� Airline reservation: all seats on 1 flightAirline reservation: all seats on 1 flight

�� Newsgroup: all articles in 1 groupNewsgroup: all articles in 1 group

�� Bounds on 3 kinds of inconsistencyBounds on 3 kinds of inconsistency
�� Numerical error (value is inaccurate)Numerical error (value is inaccurate)

�� Order error (write(s) may be missing, or arrive outOrder error (write(s) may be missing, or arrive out--ofof--order)order)

�� Staleness (value may be outStaleness (value may be out--ofof--date)date)

�� “Consistency cost” of operations can be characterized in “Consistency cost” of operations can be characterized in
terms of conits, and bounds on inconsistency enforcedterms of conits, and bounds on inconsistency enforced © 2001

Stanford

TACTTACT--like example: TranSendlike example: TranSend

�� Early stab at lossy onEarly stab at lossy on--thethe--fly Web image compression, fly Web image compression,
extensively parameterized extensively parameterized (per user, device, etc.)(per user, device, etc.)

�� Harvest: “semantic fidelity” of what you getHarvest: “semantic fidelity” of what you get
�� Worst case: the original image Worst case: the original image originaloriginal

�� Intermediate case: “close”Intermediate case: “close”
image that has beenimage that has been
previously computedpreviously computed
and cachedand cached

�� Metrics for semantic fidelity?Metrics for semantic fidelity?

�� Trade harvest forTrade harvest for
yield/throughputyield/throughput

�� TACTTACT--like, though TACTlike, though TACT
didn’t exist thendidn’t exist then

desired

delivered

© 2001
Stanford

Another special case: DQ PrincipleAnother special case: DQ Principle

�� Model: readModel: read--mostly database striped across many mostly database striped across many
machinesmachines

�� Idea: Data/Query x Queries/Sec = Data/SecIdea: Data/Query x Queries/Sec = Data/Sec

�� Goal: design system so that D/Q Goal: design system so that D/Q oror Q/S are tunableQ/S are tunable
�� Then you can decide how partial failure affects usersThen you can decide how partial failure affects users

�� In practice, Internet systems constraint is offered load of Q/S,In practice, Internet systems constraint is offered load of Q/S, so so
failures affect D/Q for each userfailures affect D/Q for each user

�� Can use some replication of most common data to mitigate Can use some replication of most common data to mitigate
effects of reducing D/Qeffects of reducing D/Q

© 2001
Stanford

Fault ContainmentFault Containment

�� Uses of software based fault isolation and VM technologyUses of software based fault isolation and VM technology
�� Protecting the “real” hardware (now will also be used for ASP’s)Protecting the “real” hardware (now will also be used for ASP’s)

�� HypervisorHypervisor--based F/Tbased F/T

�� Orthogonal mechanisms for fault containmentOrthogonal mechanisms for fault containment

�� …and enforcing your assumptions…and enforcing your assumptions

© 2001
Stanford

Extension: HypervisorExtension: Hypervisor--Based Fault ToleranceBased Fault Tolerance

�� Basic ideas (Bressoud et al, SOSPBasic ideas (Bressoud et al, SOSP--15)15)
�� Use VM’s to implement a Use VM’s to implement a hypervisorhypervisor that coordinates between a that coordinates between a

primary process and its backupprimary process and its backup

�� Instruction Instruction epochsepochs are separated by periodic S/W interruptsare separated by periodic S/W interrupts

�� Hypervisor arranges to deliver interrupts only on epoch Hypervisor arranges to deliver interrupts only on epoch
boundariesboundaries

�� Primary and backup can also communicate during Primary and backup can also communicate during
“environmental” instructions (so they see same result of I/O, eg“environmental” instructions (so they see same result of I/O, eg))

�� Backup is one epoch “behind” primary, can take over right awayBackup is one epoch “behind” primary, can take over right away

�� Recently applied to JVM by Lorenzo Alvisi et al. at UT AustinRecently applied to JVM by Lorenzo Alvisi et al. at UT Austin

�� Again, successful virtualization requires some lowerAgain, successful virtualization requires some lower--level level
guaranteesguarantees

�� Important concept: critical events occur at points of Important concept: critical events occur at points of
possible nondeterminism in instruction streampossible nondeterminism in instruction stream © 2001

Stanford

Orthogonal MechanismsOrthogonal Mechanisms

�� Bunker mentality: Bunker mentality: Design with unexpected failure in mindDesign with unexpected failure in mind
�� Minimize assumptions made of rest of systemMinimize assumptions made of rest of system

�� Keep your own house in order, but be prepared to be shot if Keep your own house in order, but be prepared to be shot if
outside monitoring sees something wrongoutside monitoring sees something wrong

�� Design systems to allow independent failureDesign systems to allow independent failure

�� In real life (hardware)In real life (hardware)
�� Mechanical interlock systemsMechanical interlock systems

�� Microprocessor hardware timeoutsMicroprocessor hardware timeouts

�� In real life (software)In real life (software)
�� Security and safetySecurity and safety

�� Deadlock detection and shootdownDeadlock detection and shootdown

© 2001
Stanford

Examples of OrthogonalityExamples of Orthogonality

�� examples of orthogonalityexamples of orthogonality
�� Software fault isolation/virtualizationSoftware fault isolation/virtualization

�� IP firewallsIP firewalls

�� Deadlock Deadlock detection & recoverydetection & recovery in databases in databases -- Note: not deadlock Note: not deadlock
avoidance!avoidance!

�� Hardware orthogonal security Hardware orthogonal security -- Fuses and hardware interlocks; Fuses and hardware interlocks;
recall the Theracrecall the Therac--2525

�� Theme: you don’t know Theme: you don’t know whywhy something went wrong, only something went wrong, only that that
something went wrong; and you can usually do fault containmentsomething went wrong; and you can usually do fault containment

�� What’s appealing about orthogonal mechanisms?What’s appealing about orthogonal mechanisms?
�� Small state space Small state space -- Behavior simple to predict (usually)Behavior simple to predict (usually)

�� Allows us to enforce at least some simple invariants Allows us to enforce at least some simple invariants -- and and
invariants are your friendsinvariants are your friends

© 2001
Stanford

Example: What Really Happened on MarsExample: What Really Happened on Mars

�� Dramatis personaeDramatis personae
�� LowLow--priority thread A: infrequent, shortpriority thread A: infrequent, short--running running

meteorological data collection, using bus mutexmeteorological data collection, using bus mutex

�� HighHigh--priority thread B: bus manager, using bus mutexpriority thread B: bus manager, using bus mutex

�� MediumMedium--priority thread C: longpriority thread C: long--running communications task running communications task
(that (that doesn’t doesn’t need the mutex)need the mutex)

�� Priority inversion scenarioPriority inversion scenario
�� A is scheduled, and grabs bus mutexA is scheduled, and grabs bus mutex

�� B is scheduled, and blocks waiting for A to release mutexB is scheduled, and blocks waiting for A to release mutex

�� C is scheduled while B is waiting for mutexC is scheduled while B is waiting for mutex

�� C has higher priority than A, so it prevents A from running C has higher priority than A, so it prevents A from running
(and therefore B as well)(and therefore B as well)

�� Watchdog timer notices B hasn’t run, concludes something is Watchdog timer notices B hasn’t run, concludes something is
wrong, rebootswrong, reboots

© 2001
Stanford

On Enforcing Your AssumptionsOn Enforcing Your Assumptions

�� Orthogonal mechanisms can be used to enforce Orthogonal mechanisms can be used to enforce
assumptions about system behaviorassumptions about system behavior
�� Infer failure of a peer Infer failure of a peer --> shoot it> shoot it

�� Assume peers will respond within a specific time Assume peers will respond within a specific time --> use timeout > use timeout
to forceto force

�� Why is this important?Why is this important?
�� Response to a detected condition may be inappropriate if Response to a detected condition may be inappropriate if

assumptions are incorrectassumptions are incorrect

© 2001
Stanford

Enforcing Invariants Made EasierEnforcing Invariants Made Easier

�� Some other possible replies to fopen():Some other possible replies to fopen():
�� “Maybe later” (NFS soft mount failed this time)“Maybe later” (NFS soft mount failed this time)

�� “How about a stale copy” (AFS server down, cached copy “How about a stale copy” (AFS server down, cached copy
available, freshness questionable)available, freshness questionable)

�� “Took too long, you consumed too many resources, try again “Took too long, you consumed too many resources, try again
later” (like “HTTP server too busy”)later” (like “HTTP server too busy”)

�� Essence of the “MIT approach” vs “New Jersey approach”Essence of the “MIT approach” vs “New Jersey approach”
�� Weaken the guarantee/illusion offered by subsystemWeaken the guarantee/illusion offered by subsystem

�� Force higherForce higher--level app to deal with being told “no”level app to deal with being told “no”

�� Perhaps wrappers or other mechanisms will be developed to Perhaps wrappers or other mechanisms will be developed to
simplify thissimplify this

�� Makes system more robust: simpler Makes system more robust: simpler ----> easier to understand, plus > easier to understand, plus
instills “bunker mentality” in (good) programmersinstills “bunker mentality” in (good) programmers

© 2001
Stanford

Soft StateSoft State

�� Soft state and announce/listenSoft state and announce/listen

�� Soft state and its relation to robustnessSoft state and its relation to robustness

�� An example of using soft state for managing partial An example of using soft state for managing partial
failuresfailures

© 2001
Stanford

Loose coupling with soft stateLoose coupling with soft state

�� Announce/listen + soft state, vs. hard stateAnnounce/listen + soft state, vs. hard state
�� “sender” continually sends state messages to “receiver”, who may“sender” continually sends state messages to “receiver”, who may

or may not reply/ackor may not reply/ack

�� If receiver “forgets” state, just wait for next messageIf receiver “forgets” state, just wait for next message

�� Example: setting a variable on the serverExample: setting a variable on the server

�� Assumptions & challengesAssumptions & challenges
�� Assumption: messages may get lost, receiver may be down, etc.Assumption: messages may get lost, receiver may be down, etc.

�� Messages must be idempotent (this is a big one)Messages must be idempotent (this is a big one)

�� May not work for realMay not work for real--timetime--constrained activitiesconstrained activities

�� Or may require hysteresis to avoid oscillationOr may require hysteresis to avoid oscillation

© 2001
Stanford

Uses of Soft StateUses of Soft State

�� WideWide--area Internet protocols, esp. multicast routingarea Internet protocols, esp. multicast routing

�� Scalable Reliable Multicast (SRM)Scalable Reliable Multicast (SRM)
�� Members of a group session each have soft copies of group stateMembers of a group session each have soft copies of group state

�� State “repairs” are multicastState “repairs” are multicast

�� New members can ask for “fast replay” to catch upNew members can ask for “fast replay” to catch up

�� Related concept: Related concept: expirationexpiration--based schemesbased schemes
�� Web caching: expiration bounds stalenessWeb caching: expiration bounds staleness

�� Leases: expiration bounds unavailability of a locked resource duLeases: expiration bounds unavailability of a locked resource due e
to node failureto node failure

© 2001
Stanford

Soft State Pros and ConsSoft State Pros and Cons

++ No special recovery codeNo special recovery code
�� Recovery == restartRecovery == restart

�� “Recovery” paths exercised during normal operation“Recovery” paths exercised during normal operation

++ Leaving the group (or dying) doesn’t require special codeLeaving the group (or dying) doesn’t require special code
�� Timeouts/expirations mean no garbage collectionTimeouts/expirations mean no garbage collection

�� “Passive” entities will not consume system resources“Passive” entities will not consume system resources

–– Staleness or other imprecision in answerStaleness or other imprecision in answer

–– Possible lack of atomicity/ordering of state updatesPossible lack of atomicity/ordering of state updates

Next: Exploiting soft state/approximate values for failure Next: Exploiting soft state/approximate values for failure
masking…masking…

© 2001
Stanford

Software Pitfalls (Leveson, Ch. 2)Software Pitfalls (Leveson, Ch. 2)

�� Unlike hardware, software is purely abstract designUnlike hardware, software is purely abstract design
�� Unlike hardware, software doesn’t “fail”Unlike hardware, software doesn’t “fail”

�� Design unconstrained by physical lawsDesign unconstrained by physical laws

�� Cost of modifying design hidden by lack of physical constraintsCost of modifying design hidden by lack of physical constraints

�� RealReal state space includes what the hardware and other software state space includes what the hardware and other software
are doing, and includes states that don’t correspond to states iare doing, and includes states that don’t correspond to states in n
the abstract modelthe abstract model

�� Software as a discrete (vs. analog) state systemSoftware as a discrete (vs. analog) state system
�� Effect of small perturbation on an analog system vs. on a Effect of small perturbation on an analog system vs. on a

software discrete systemsoftware discrete system

�� Software can “fail” in a way that is completely unrelated to howSoftware can “fail” in a way that is completely unrelated to how
the environment/inputs were perturbedthe environment/inputs were perturbed

© 2001
Stanford

Software Pitfalls, cont’d.Software Pitfalls, cont’d.

�� Exploding some common mythsExploding some common myths
�� “Reuse of software increases safety” “Reuse of software increases safety” -- or, it perpetuates the same or, it perpetuates the same

(hidden) bugs (e.g. Therac(hidden) bugs (e.g. Therac--25)25)

�� “Formal verification can remove all software“Formal verification can remove all software--related errors” related errors” --
unless software/system fails in a way that is unless software/system fails in a way that is outsideoutside its design its design
point (e.g. overload/thrashing)point (e.g. overload/thrashing)

�� “GP computers + software are more cost effective [compared to a “GP computers + software are more cost effective [compared to a
dedicated purposededicated purpose--designed system]” designed system]” -- Space Shuttle software Space Shuttle software
costs ~$100M/year to maintaincosts ~$100M/year to maintain

© 2001
Stanford

Revealed Truth: EndRevealed Truth: End--toto--End ArgumentEnd Argument

�� Don’t put functionality in a lower layer if you’ll just have Don’t put functionality in a lower layer if you’ll just have
to repeat it in a higher layer anyway.to repeat it in a higher layer anyway.
�� If you do put it in a lower layer, make sure it’s only a If you do put it in a lower layer, make sure it’s only a

performance optimization.performance optimization.

�� Jim Gray: “you can’t trust anything”Jim Gray: “you can’t trust anything”
�� Silent HW failures/incorrectness not that uncommonSilent HW failures/incorrectness not that uncommon

�� Examples: ECC memory, disk controllers, OS VM system, etc.Examples: ECC memory, disk controllers, OS VM system, etc.

�� Still need endStill need end--toto--end append app--level checks (e.g. Exchange Server)level checks (e.g. Exchange Server)

�� …Is this ominous news for the VM approach?…Is this ominous news for the VM approach?

�� To what extent do various faultTo what extent do various fault--masking mechanisms masking mechanisms
violate (or reinforce) the endviolate (or reinforce) the end--toto--end argument?end argument?
�� e.g. “transparent” checkpointing and restartinge.g. “transparent” checkpointing and restarting

© 2001
Stanford

E2E and Dependability: Some ThoughtsE2E and Dependability: Some Thoughts

�� Use both endUse both end--toto--end and componentend and component--level checkslevel checks
�� e.g. crosse.g. cross--check answer to a simple querycheck answer to a simple query

�� Use crossUse cross--checks to validate/enforce assumptions about checks to validate/enforce assumptions about
e2e or componente2e or component--level checkslevel checks
�� observation: TImeout occurred communicating with component Xobservation: TImeout occurred communicating with component X

�� --> hypothesis: component X is wedged and must be restarted> hypothesis: component X is wedged and must be restarted

�� crosscross--check: look for other signs consistent with X being wedged check: look for other signs consistent with X being wedged
((ps, rusage, ps, rusage, etc)etc)

�� enforcement: shoot X, then verify it’s gone from process tableenforcement: shoot X, then verify it’s gone from process table

�� Challenge: requires knowledge of endChallenge: requires knowledge of end--toto--end semanticsend semantics
�� Most “classical F/T” approaches Most “classical F/T” approaches don’tdon’t take this tack.take this tack.

© 2001
Stanford

Other readings (will be on Web)Other readings (will be on Web)

�� Virtualization and sandboxing: other readingsVirtualization and sandboxing: other readings
�� HypervisorHypervisor--Based Fault Tolerance (Bressoud et al., SOSPBased Fault Tolerance (Bressoud et al., SOSP--15)15)

�� Disco: Running Commodity OS’s on Scalable Multiprocessors Disco: Running Commodity OS’s on Scalable Multiprocessors
(Bugnion et al., ACM TOCS 15(4) and SOSP(Bugnion et al., ACM TOCS 15(4) and SOSP--16)16)

�� Recursive Virtual Machines in Fluke (Ford et al., OSDI 96)Recursive Virtual Machines in Fluke (Ford et al., OSDI 96)

�� Efficient SoftwareEfficient Software--Based Fault Isolation (Lucco & Wahbe, 1993)Based Fault Isolation (Lucco & Wahbe, 1993)

�� JANUS: an environment for running untrusted helper apps JANUS: an environment for running untrusted helper apps
(Goldberg et al., USENIX 1996 Security Conference)(Goldberg et al., USENIX 1996 Security Conference)

�� Harvest, yield, consistency, availabilityHarvest, yield, consistency, availability
�� Harvest, Yield, and Scalable Tolerant Systems (Fox & Brewer, Harvest, Yield, and Scalable Tolerant Systems (Fox & Brewer,

HotOSHotOS--VII)VII)

�� TACT (Yu & Vahdat, SOSPTACT (Yu & Vahdat, SOSP--18 and others)18 and others)

© 2001
Stanford

Other readingsOther readings

�� Reliability in cluster based serversReliability in cluster based servers
�� Lessons From GiantLessons From Giant--Scale Services (Brewer, IEEE Internet Scale Services (Brewer, IEEE Internet

Computing; draft on Web)Computing; draft on Web)

�� ClusterCluster--based Scalable Network Services (Fox, Brewer et al, based Scalable Network Services (Fox, Brewer et al,
SOSPSOSP--16)16)

© 2001
Stanford

Putting It All TogetherPutting It All Together

Berkeley SNS/TACC: an applicationBerkeley SNS/TACC: an application--level example of several level example of several
of these techniques in action:of these techniques in action:

�� SupervisorSupervisor--based redundancy for both availability and based redundancy for both availability and
performanceperformance

�� Loose coupling and announce/listen to circumvent SPF for Loose coupling and announce/listen to circumvent SPF for
supervisorsupervisor

�� Orthogonal mechanisms to account for legacy code Orthogonal mechanisms to account for legacy code
vagariesvagaries

�� NormalNormal--operation and failureoperation and failure--recovery code paths are the recovery code paths are the
samesame

© 2001
Stanford

TACC/SNSTACC/SNS

�� Specialized cluster runtime to host WebSpecialized cluster runtime to host Web--like workloadslike workloads
�� TACC: transformation, aggregation, caching and customizationTACC: transformation, aggregation, caching and customization----

elements of an Internet serviceelements of an Internet service

�� Build apps from composable modules, UnixBuild apps from composable modules, Unix--pipelinepipeline--stylestyle

�� Goal: complete separation of Goal: complete separation of *ility*ility concerns from concerns from
application logicapplication logic
�� Legacy code encapsulation, multiple language supportLegacy code encapsulation, multiple language support

�� Insulate programmers from nasty engineeringInsulate programmers from nasty engineering

© 2001
Stanford

“Starfish” Availability: LB Death“Starfish” Availability: LB Death

�� FE detects via broken pipe/timeout, restarts LBFE detects via broken pipe/timeout, restarts LB

C$

Interconnect

FE

$ $

WWWT

FE

FE

LB/FT

WWWA

© 2001
Stanford

“Starfish” Availability: LB Death“Starfish” Availability: LB Death

�� FE detects via broken pipe/timeout, restarts LBFE detects via broken pipe/timeout, restarts LB

C$

Interconnect

FE

$ $

WWWT

FE

FE

LB/FT

WWWA

LB/FT

New LB announces itself (multicast), contacted by workers, New LB announces itself (multicast), contacted by workers,
gradually rebuilds load tablesgradually rebuilds load tables

If partition heals, extra LB’s commit suicideIf partition heals, extra LB’s commit suicide
FE’s operate using cached LB info during failureFE’s operate using cached LB info during failure

© 2001
Stanford

“Starfish” Availability: LB Death“Starfish” Availability: LB Death

�� FE detects via broken pipe/timeout, restarts LBFE detects via broken pipe/timeout, restarts LB

C$

Interconnect

FE

$ $

WWWT

FE

FE

LB/FT

WWWA

New LB announces itself (multicast), contacted by workers, New LB announces itself (multicast), contacted by workers,
gradually rebuilds load tablesgradually rebuilds load tables

If partition heals, extra LB’s commit suicideIf partition heals, extra LB’s commit suicide
FE’s operate using cached LB info during failureFE’s operate using cached LB info during failure

© 2001
Stanford

SNS Availability MechanismsSNS Availability Mechanisms

�� Soft state everywhereSoft state everywhere
�� Multicast based announce/listen to refresh the stateMulticast based announce/listen to refresh the state

�� Idea stolen from multicast routing in the Internet!Idea stolen from multicast routing in the Internet!

�� Process peers watch each otherProcess peers watch each other
�� Because of no hard state, “recovery” == “restart”Because of no hard state, “recovery” == “restart”

�� Because of multicast level of indirection, don’t need a locationBecause of multicast level of indirection, don’t need a location
directory for resourcesdirectory for resources

�� Timeouts and restarts everywhereTimeouts and restarts everywhere

�� Load balancing, hot updates, migration are “easy”Load balancing, hot updates, migration are “easy”
�� Shoot down a worker, and it will recoverShoot down a worker, and it will recover

�� Upgrade == install new software, shoot down oldUpgrade == install new software, shoot down old

�� Mostly graceful degradationMostly graceful degradation

