Dependability Lessons from
Internetty Systems: An Overview

Stanford University CS 444A / UC Berkeley CS 294-4
Recovery-Oriented Computing, Autumn 01
Armando Fox, fox@cs.stanford.edu

Consistency/Availability Tradeoff: CAP

CAP principle (this formulation due to Brewer):

m In a networked/distributed storage system, you can have
any 2 of consistency, high availability, partition resilience.

Internet systems favor A and P over C
Databases favor C and A over P
Surely other examples

m Generalization: can you trade some of one for more of
another? (hint: yes)

Concepts Overview
Trading consistency for availability: Harvest, yield, and the DQ
principle; TACT
Runtime fault containment: virtualization and its uses

Orthogonal mechanisms: timeouts, end-to-end checks, statistical
detection of performance failures

State management, hard and soft state

Revealed truths: end-to-end argument (Saltzer), software pitfalls
(Leveson), and their application to dependability

Many, many supplementary readings about these topics

©2001
Stanford

Consistency/Availability: Harvest/Yield

m Yield. probability of completing a query

m Harvest: (application-specific) fidelity of the answer
Fraction of data represented?
Precision?
Semantic proximity?

m Harvest/yield questions:
When can we trade harvest for yield to improve availability?

How to measure harvest “threshold” below which response is not
useful?

m Application decomposition to improve “degradation
tolerance” (and therefore availability)

Generalization: TACT (Yu & Vahdat)

Model: distributed database using anti-entropy to
approach consistency

“Conit” captures app-specific consistency unit (think: ADU

TACT-like example: TranSend

Early stab at lossy on-the-fly Web image compression,
extensively parameterized (per user, device, etc.)

Harvest: “semantic fidelity” of what you get

of consistency) Worst case: the original image original
Airline reservation: all seats on 1 flight Intermediate case: “close”

image that has been desl;r ed

previously computed

Bounds on 3 kinds of inconsistency and cached

Metrics for semantic fidelity?

Newsgroup: all articles in 1 group

Numerical error (value is inaccurate)

Order error (write(s) may be missing, or arrive out-of-order) Trade harvest for

Staleness (value may be out-of-date) yield/throughput -t
)

“Consistency cost” of operations can be characterized in TACT-like, though TACT delred’_

i i i ©2001 . . ©2001
terms of conits, and bounds on inconsistency enforced (a0t didn’t exist then (200t

Another special case: DQ Principle Fault Containment
m Model: read-mostly database striped across many m Uses of software based fault isolation and VM technology
machines Protecting the “real” hardware (now will also be used for ASP’s)

m Idea: Data/Query x Queries/Sec = Data/Sec Bipeisonbaedil

. m Orthogonal mechanisms for fault containment
m Goal: design system so that D/Q or Q/S are tunable g
Then you can decide how partial failure affects users m ...and enforcing your assumptions

In practice, Internet systems constraint is offered load of Q/S, so
failures affect D/Q for each user

Can use some replication of most common data to mitigate
effects of reducing D/Q

Extension: Hypervisor-Based Fault Tolerance Orthogonal Mechanisms

m Basic ideas (Bressoud et al, SOSP-15)

Use VM’s to implement a Aypervisor that coordinates between a
primary process and its backup

m Bunker mentality: Design with unexpected failure in mind
Minimize assumptions made of rest of system

Keep your own house in order, but be prepared to be shot if

Instruction epochs are separated by periodic S/W interrupts outside monitoring sees something wrong

Hypervisor arranges to deliver interrupts only on epoch
boundaries

Design systems to allow independent failure

m In real life (hardware)
Mechanical interlock systems

Primary and backup can also communicate during
“environmental” instructions (so they see same result of I/O, eg)

Backup is one epoch “behind” primary, can take over right away Microprocessor hardware timeouts

Recently applied to JVM by Lorenzo Alvisi et al. at UT Austin

. R . m In real life (software)
Again, successful virtualization requires some lower-level
guarantees Security and safety

N) Deadlock detection and shootdown
m Important concept: critical events occur at points of

. e . . ©2001 ©2001
possible nondeterminism in instruction stream Stanford Stanford

Examples of Orthogonality

Example: What Really Happened on Mars

m examples of orthogonality m Dramatis personae

Software fault isolation/virtualization
IP firewalls

Deadlock detection & recovery in databases - Note: not deadlock
avoidance!

Hardware orthogonal security - Fuses and hardware interlocks;
recall the Therac-25

Theme: you don't know why something went wrong, only that
something went wrong; and you can usually do fault containment

m What's appealing about orthogonal mechanisms?

Small state space - Behavior simple to predict (usually)

Allows us to enforce at least some simple invariants - and
invariants are your friends

Low-priority thread A: infrequent, short-running
meteorological data collection, using bus mutex

High-priority thread B: bus manager, using bus mutex

Medium-priority thread C: long-running communications task
(that doesnt need the mutex)

m Priority inversion scenario
A is scheduled, and grabs bus mutex
B is scheduled, and blocks waiting for A to release mutex
C is scheduled while B is waiting for mutex

C has higher priority than A, so it prevents A from running
(and therefore B as well)

Watchdog timer notices B hasn't run, concludes something is
wrong, reboots

On Enforcing Your Assumptions

m Orthogonal mechanisms can be used to enforce
assumptions about system behavior

Infer failure of a peer -> shoot it

Assume peers will respond within a specific time -> use timeout
to force

m Why is this important?

Response to a detected condition may be inappropriate if
assumptions are incorrect

©2001
Stanford

Soft State

m Soft state and announce/listen
m Soft state and its relation to robustness

m An example of using soft state for managing partial
failures

Enforcing Invariants Made Easier

m Some other possible replies to fopen():
“Maybe later” (NFS soft mount failed this time)

“How about a stale copy” (AFS server down, cached copy
available, freshness questionable)

“Took too long, you consumed too many resources, try again
later” (like "HTTP server too busy”)

m Essence of the “"MIT approach” vs “"New Jersey approach”
Weaken the guarantege/illusion offered by subsystem
Force higher-level app to deal with being told “no”

Perhaps wrappers or other mechanisms will be developed to
simplify this

Makes system more robust: simpler --> easier to understand, plus
instills “bunker mentality” in (good) programmers

©2001
Stanford

Loose coupling with soft state

m Announce/listen + soft state, vs. hard state

“sender” continually sends state messages to “receiver”, who may
or may not reply/ack

If receiver “forgets” state, just wait for next message
Example: setting a variable on the server

m Assumptions & challenges

Assumption: messages may get lost, receiver may be down, etc.
Messages must be idempotent (this is a big one)
May not work for real-time-constrained activities

= Or may require hysteresis to avoid oscillation

Uses of Soft State

m Wide-area Internet protocols, esp. multicast routing

m Scalable Reliable Multicast (SRM)
Members of a group session each have soft copies of group state
State “repairs” are multicast
New members can ask for “fast replay” to catch up

m Related concept: expiration-based schemes
Web caching: expiration bounds staleness

Leases: expiration bounds unavailability of a locked resource due
to node failure

©2001
Stanford

Software Pitfalls (Leveson, Ch. 2)

m Unlike hardware, software is purely abstract design
Unlike hardware, software doesn't “fail”
Design unconstrained by physical laws
Cost of modifying design hidden by lack of physical constraints

Real state space includes what the hardware and other software
are doing, and includes states that don’t correspond to states in
the abstract model

m Software as a discrete (vs. analog) state system

Effect of small perturbation on an analog system vs. on a
software discrete system

Software can “fail” in a way that is completely unrelated to how
the environment/inputs were perturbed

Soft State Pros and Cons

No special recovery code
Recovery == restart
“Recovery” paths exercised during normal operation

Leaving the group (or dying) doesn't require special code
Timeouts/expirations mean no garbage collection
“Passive” entities will not consume system resources

Staleness or other imprecision in answer
Possible lack of atomicity/ordering of state updates

Next: Exploiting soft state/approximate values for failure
masking...

©2001
Stanford

Software Pitfalls, cont’d.

m Exploding some common myths

“Reuse of software increases safety” - or, it perpetuates the same
(hidden) bugs (e.g. Therac-25)

“Formal verification can remove all software-related errors” -
unless software/system fails in a way that is outside its design
point (e.g. overload/thrashing)

“GP computers + software are more cost effective [compared to a
dedicated purpose-designed system]” - Space Shuttle software
costs ~$100M/year to maintain

Revealed Truth: End-to-End Argument E2E and Dependability: Some Thoughts

m Don't put functionality in a lower layer if you'll just have m Use both end-to-end and component-level checks
to repeat it in a higher layer anyway. e.g. cross-check answer to a simple query

If you do put it in a lower layer, make sure it's only a . .
performance optimization. m Use cross-checks to validate/enforce assumptions about

e2e or component-level checks
m Jim Gray: “you can't trust anything observation: TImeout occurred communicating with component X
Silent HW failures/incorrectness not that uncommon -> hypothesis: component X is wedged and must be restarted

Examples: ECC memory, disk controllers, OS VM system, etc. cross-check: look for other signs consistent with X being wedged
Still need end-to-end app-level checks (e.g. Exchange Server) (ps, rusage, etc)

...Is this ominous news for the VM approach? enforcement: shoot X, then verify it's gone from process table

m To what extent do various fault-masking mechanisms m Challenge: requires knowledge of end-to-end semantics
violate (or reinforce) the end-to-end argument? Most “classical F/T” approaches don'ttake this tack.
e.g. “transparent” checkpointing and restarting

©2001 ©2001
Stanford Stanford

Other readings (will be on Web) Other readings

m Virtualization and sandboxing: other readings m Reliability in cluster based servers
Hypervisor-Based Fault Tolerance (Bressoud et al., SOSP-15) Lessons From Giant-Scale Services (Brewer, IEEE Internet
Disco: Running Commodity OS’s on Scalable Multiprocessors Computing; draft on Web)
(Bugnion et al., ACM TOCS 15(4) and SOSP-16) Cluster-based Scalable Network Services (Fox, Brewer et al,
Recursive Virtual Machines in Fluke (Ford et al., OSDI 96) SOSP-16)
Efficient Software-Based Fault Isolation (Lucco & Wahbe, 1993)

JANUS: an environment for running untrusted helper apps
(Goldberg et al., USENIX 1996 Security Conference)

m Harvest, yield, consistency, availability

Harvest, Yield, and Scalable Tolerant Systems (Fox & Brewer,
HotOS-VII)

TACT (Yu & Vahdat, SOSP-18 and others)

Putting It All Together TACC/SNS

Berkeley SNS/TACC: an application-level example of several m Specialized cluster runtime to host Web-like workloads

of these technigues in action: TACC: transformation, aggregation, caching and customization--

; . elements of an Internet service
Supervisor-based redundancy for both availability and 0 s e eilgeeEtls el s, Uihessaineciis
performance
m Goal: complete separation of *ility concerns from

application logic

Legacy code encapsulation, multiple language support

Loose coupling and announce/listen to circumvent SPF for
supervisor

Orthogonal mechanisms to account for legacy code Insulate programmers from nasty engineering
vagaries

Normal-operation and failure-recovery code paths are the
same

©2001 ©2001
Stanford Stanford

“Starfish” Availability: LB Death “Starfish” Availability: LB Death

FE detects via broken pipe/timeout, restarts LB FE detects via broken pipe/timeout, restarts LB

New LB announces itself (multicast), contacted by workers,
gradually rebuilds load tables

If partition heals, extra LB’s commit suicide
FE’s operate using cached LB info during failure

..

mm FE

<
<

“Starfish™ Availability: LB Death

FE detects via broken pipe/timeout, restarts LB
New LB announces itself (multicast), contacted by workers,
gradually rebuilds load tables

If partition heals, extra LB’s commit suicide
FE’s operate using cached LB info during failure

©2001
Stanford

SNS Availability Mechanisms

m Soft state everywhere
Multicast based announce/listen to refresh the state
Idea stolen from multicast routing in the Internet!

m Process peers watch each other
Because of no hard state, “recovery” == “restart”

Because of multicast level of indirection, don’t need a location
directory for resources

Timeouts and restarts everywhere

m Load balancing, hot updates, migration are “easy”
Shoot down a worker, and it will recover
Upgrade == install new software, shoot down old

Mostly graceful degradation 02001

Stanford

