
Slide 1

Recovery Oriented Computing

Dave Patterson
University of California at Berkeley

Patterson@cs.berkeley.edu

http://roc.CS.Berkeley.EDU/

September 2001

Slide 2

Outline
• What have we been doing

• Motivation for a new Challenge:
making things work (including endorsements)

• What have we learned

• New Challenge: Recovery-Oriented Computer

• Examples: benchmarks, prototypes

Slide 3

Goals,Assumptions of last 15 years
• Goal #1: Improve performance
• Goal #2: Improve performance
• Goal #3: Improve cost-performance
• Assumptions

– Humans are perfect (they don’t make mistakes during
installation, wiring, upgrade, maintenance or repair)

– Software will eventually be bug free
(good programmers write bug-free code)

– Hardware MTBF is already very large (~100 years
between failures), and will continue to increase

Slide 4

After 15 year improving
Performance

• Availability is now a vital metric for servers!
– near-100% availability is becoming mandatory

» for e-commerce, enterprise apps, online services, ISPs
– but, service outages are frequent

» 65% of IT managers report that their websites were
unavailable to customers over a 6-month period

• 25%: 3 or more outages
– outage costs are high

» social effects: negative press, loss of customers who
“click over” to competitor

Source: InternetWeek 4/3/2000

Slide 5

Downtime Costs (per Hour)
• Brokerage operations $6,450,000
• Credit card authorization $2,600,000
• Ebay (1 outage 22 hours) $225,000
• Amazon.com $180,000
• Package shipping services $150,000
• Home shopping channel $113,000
• Catalog sales center $90,000
• Airline reservation center $89,000
• Cellular service activation $41,000
• On-line network fees $25,000
• ATM service fees $14,000

Source: InternetWeek 4/3/2000 + Fibre Channel: A Comprehensive Introduction, R. Kembel
2000, p.8. ”...based on a survey done by Contingency Planning Research." Slide 6

Jim Gray: Trouble-Free Systems
• Manager

– Sets goals
– Sets policy
– Sets budget
– System does the rest.

• Everyone is a CIO
(Chief Information Officer)

• Build a system
– used by millions of people each day
– Administered and managed by a ½ time person.

» On hardware fault, order replacement part
» On overload, order additional equipment
» Upgrade hardware and software automatically.

“What Next?
A dozen remaining IT problems”

Turing Award Lecture,
FCRC,

May 1999
Jim Gray
Microsoft

Slide 7

Lampson: Systems Challenges
• Systems that work

– Meeting their specs
– Always available
– Adapting to changing environment
– Evolving while they run
– Made from unreliable components
– Growing without practical limit

• Credible simulations or analysis
• Writing good specs
• Testing
• Performance

– Understanding when it doesn’t matter

“Computer Systems Research
-Past and Future”

Keynote address,
17th SOSP,

Dec. 1999
Butler Lampson

Microsoft

Slide 8

Hennessy: What Should the “New World”
Focus Be?• Availability

– Both appliance & service
• Maintainability

– Two functions:
» Enhancing availability by preventing failure
» Ease of SW and HW upgrades

• Scalability
– Especially of service

• Cost
– per device and per service transaction

• Performance
– Remains important, but its not SPECint

“Back to the Future:
Time to Return to Longstanding

Problems in Computer Systems?”
Keynote address,

FCRC,
May 1999

John Hennessy
Stanford

Slide 9

The real scalability problems: AME
• Availability

– systems should continue to meet quality of service
goals despite hardware and software failures

• Maintainability
– systems should require only minimal ongoing human

administration, regardless of scale or complexity:
Today, cost of maintenance = 10X cost of purchase

• Evolutionary Growth
– systems should evolve gracefully in terms of

performance, maintainability, and availability as they
are grown/upgraded/expanded

• These are problems at today’s scales, and will
only get worse as systems grow

Slide 10

Total Cost of Ownership (IBM)

HW
management

3%

Environmental
14%

Downtime
20%

Purchase
20%

Administration
13%

Backup
Restore
30%

•Administration: all people time
•Backup Restore: devices, media, and people time
•Environmental: floor space, power, air conditioning

Slide 11

Lessons learned from Past Projects
for which might help AME

• Know how to improve performance (and cost)
– Run system against workload, measure, innovate, repeat
– Benchmarks standardize workloads, lead to competition,

evaluate alternatives; turns debates into numbers
• Major improvements in Hardware Reliability

– 1990 Disks 50,000 hour MTBF to 1,200,000 in 2000
– PC motherboards from 100,000 to 1,000,000 hours

• Yet Everything has an error rate
– Well designed and manufactured HW: >1% fail/year
– Well designed and tested SW: > 1 bug / 1000 lines
– Well trained people doing routine tasks: 1%-2%
– Well run collocation site (e.g., Exodus):

1 power failure per year, 1 network outage per year
Slide 12

Lessons learned from Past Projects
for AME

• Maintenance of machines (with state) expensive
– ~5X to 10X cost of HW
– Stateless machines can be trivial to maintain (Hotmail)

• System admin primarily keeps system available
– System + clever human working during failure = uptime
– Also plan for growth, software upgrades, configuration,

fix performance bugs, do backup
• Software upgrades necessary, dangerous

– SW bugs fixed, new features added, but stability?
– Admins try to skip upgrades, be the last to use one

Slide 13

Lessons learned from Internet
• Realities of Internet service environment:

– hardware and software failures are inevitable
» hardware reliability still imperfect
» software reliability thwarted by rapid evolution
» Internet system scale exposes second-order failure modes

– system failure modes cannot be modeled or predicted
» commodity components do not fail cleanly
» black-box system design thwarts models
» unanticipated failures are normal

– human operators are imperfect
» human error accounts for ~50% of all system failures

Sources: Gray86, Hamilton99, Menn99, Murphy95, Perrow99, Pope86
Slide 14

 Cause of System Crashes

20%
10% 5%

50%

18%

5%

15%

53%

69%

15% 18% 21%

0%

20%

40%

60%

80%

100%

1985 1993 2001

Other: app, power,
network failure
System management:
actions + N/problem
Operating System
failure
Hardware failure

(est.)

Lessons learned from Past Projects
for AME

• Failures due to people up, hard to measure
– VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01
– HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?
– How get administrator to admit mistake? (Heisenberg?)

Slide 15

Lessons learned from Past Projects
for AME

• “Sources of Failure in the Public Switched
Telephone Network,” Kuhn
– FCC Records 1992-1994; IEEE Computer, 30:4 (Apr 97)
– Overload (not sufficient switching to lower costs)

another 6% outages, 44% minutes

Number of Outages

Human-company
Human-external
HW failures
Act of Nature
SW failure
Vandalism

Minutes of Failure

Slide 16

Learning from other fields: PSTN
• FCC-collected data on outages in the US
public-switched telephone network

– metric: breakdown of customer calls blocked by system outages
(excluding natural disasters). Jan-June 2001

9%

47%

17%

5%

22%

Human-co.

Human-ext.

Hardware Failure

Software Failure

Overload

Vandalism

Human error accounts for
56%56% of all blocked calls

– comparison with 1992-4 data shows that human error is the only
factor that is not improving over time

Slide 17

Lessons learned from Past Projects
for AME

• Components fail slowly
– Disks, Memory, Software give indications before fail
(Interfaces don’t pass along this information)

• Component performance varies
– Disk inner track vs. outer track: 1.8X Bandwidth
– Refresh of DRAM
– Daemon processes in nodes of cluster
– Error correction, retry on some storage accesses
– Maintenance events in switches
(Interfaces don’t pass along this information)

Slide 18

Lessons Learned from Other Fields
Common threads in accidents ~3 Mile Island
1.More multiple failures than you believe

possible, in part because accumulate
2. Operators cannot fully understand system

because errors in implementation,
measurement system, warning systems.
Also complex, hard to predict interactions

3.Tendency to blame operators afterwards (60-80%),
but they must operate with missing, wrong information

4.The systems are never all working fully properly:
bad warning lights, sensors out, things in repair

5.Systems that kick in when trouble often flawed. At 3
Mile Island problem 2 valves left in the wrong position-
they were symmetric parts of a redundant system used
only in an emergency. The fact that the facility runs
under normal operation masks errors in error handling

Charles Perrow, Normal Accidents: Living with High Risk Technologies, Perseus Books, 1990

Slide 19

Lessons Learned from Other Fields
• 1800s: 1/4 iron truss railroad bridges failed!
• Techniques invented since:

– Learn from failures vs. successes
– Redundancy to survive some failures
– Margin of safety 3X-6X vs. calculated load

• 1 sentence definition of safety
– “A safe structure will be one whose

weakest link is never overloaded by
the greatest force to which the
structure is subjected.”

• Safety is part of Civil Engineering DNA
– “Structural engineering is the science and art of

designing and making, with economy and elegance,
buildings, bridges, frameworks, and similar structures so
that they can safely resist the forces to which they may
be subjected” Slide 20

Lessons Learned from Other Fields
• Human errors of 2 types

– Slips/Lapses: error in execution/memory
– Mistakes: error in plan

Unintentional

Intentional

• Model of cognitive actions and thus errors:
Generic Error Modeling System
• Skill Based: stored patterns determines response;

before a problem occurs; ~ 60% of errors
• Rule Based: if-then production rules learned by

experience; post problem; stored in a hierarchy, with
most general at top, exceptions at the bottom; ~ 30%

• Knowledge Based: when if-then rules don’t solve, then
must do new solution in real time. After problem occurs;
only option is trial and error; ~ 10%

Slide 21

Human Error
• Cognitive Strain leads people to use least effort

to solve problem, particularly when under stress
of a disaster, people will naturally try shortcuts
SB < RB < KB
– Humans: both fast parallel searching (SB/RB), and

slow, serial searching that they don’t like to do (KB)
– When conditions are appropriate, select the rules that

are most frequently used (“frequency gambling”)
– “In short, humans are furious pattern matchers.”

• Human error detection rates ~3/4
(SB: 86%; R 73%; KB 70%)

Slide 22

Human Error: Automation irony
• “Automation irony”

• Designers try to reduce reliance on humans,
leaving system vulnerable to designer errors

• What they can’t automate, they leave to humans

• Humans terrible at this; easy stuff handled, do
everything at KB level, often under time pressure
– “Even if its possible to build up skills of operators via
game playing and simulation, there is no guarantee
that this situation would be relevant, except in some
very general sense, to an upcoming event.”

• “Active” errors (by operator) are inevitable
• “Latent” errors (designer, managers, not

immediate operator errors) accumulate

Slide 23

Other Fields
• How to minimize error affordances:

» Design for consistency between designer,
system, user models; good conceptual model

» Simplify model so matches human limits:
working memory, problem solving

» Make visible what the options are,
and what are the consequences of actions

» Exploit natural mappings between intentions and
possible actions, actual state and what is perceived, …

» Use constraints (natural, artificial) to guide user
» Design for errors. Assume their occurrence. Plan for

error recovery. Make it easy to reverse action and
make hard to perform irreversible ones.

» When all else fails, standardize: ease of use more
important, only standardize as last resort

Slide 24

Lessons Learned from Other
Cultures

• Code of Hammurabi, 1795-1750 BC, Babylon
– 282 Laws on 8-foot stone monolith

229. If a builder build a house for some one,
and does not construct it properly, and the
house which he built fall in and kill its owner,
then that builder shall be put to death.

230. If it kill the son of the owner the son of
that builder shall be put to death.

232. If it ruin goods, he shall make
compensation for all that has been ruined, and
inasmuch as he did not construct properly this
house which he built and it fell, he shall re-
erect the house from his own means.

• Do we need Babylonian quality standards?

Slide 25

Outline
• What have we been doing

• Motivation for a new Challenge: making things
work (including endorsements)

• What have we learned

• New Challenge: Recovery-Oriented Computer

• Examples: benchmarks, prototypes

Slide 26

Recovery-Oriented Computing
Hypothesis

“If a problem has no solution, it may not be a problem,
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres

• Failures are a fact, and recovery/repair is how
we cope with them

• Improving recovery/repair improves availability
– UnAvailability = MTTR

MTTF
– 1/10th MTTR just as valuable as 10X MTBF

• Since major Sys Admin job is recovery after
failure, ROC also helps with maintenance

(assuming MTTR much less MTTF)

Slide 27

Tentative ROC Principles:
#1 Isolation and Redundancy

• System is Partitionable
– To isolate faults
– To enable online repair/recovery
– To enable online HW growth/SW upgrade
– To enable operator training/expand experience on

portions of real system
– Techniques: Geographically replicated sites, Shared

nothing cluster, Separate address space inside CPU
• System is Redundant

– Sufficient HW redundancy/Data replication => part of
system down but satisfactory service still available

– Enough to survive 2nd failure during recovery
– Techniques: RAID-6, N-copies of data Slide 28

Tentative ROC Principles
#2 Online verification

• System enables input insertion, output check of
all modules (including fault insertion)
– To check module sanity to find failures faster
– To test corrections of recovery mechanisms

» insert (random) faults and known-incorrect inputs
» also enables availability benchmarks

– To expose & remove latent errors from each system
– To operator train/expand experience of operator

» Periodic reports to management on skills
– To discover if warning system is broken
– Techniques: Global invariants; Topology discovery;

Program Checking (SW ECC)

Slide 29

Tentative ROC Principles
#3 Undo support

• ROC system should offer Undo
– To recover from operator errors

» People detect 3 of 4 errors, so why not undo?
– To recover from inevitable SW errors

» Restore entire system state to pre-error version
– To simplify maintenance by supporting trial and error

» Create a forgiving/reversible environment
– To recover from operator training after fault insertion
– To replace traditional backup and restore
– Techniques: Checkpointing, Logging; time travel (log

structured) file system; Virtual machines; “Go Back” file
protection

Slide 30

Tentative ROC Principles
#4 Diagnosis Support

• System assists human in diagnosing problems
– Root-cause analysis to suggest possible failure points

» Track resource dependencies of all requests
» Correlate symptomatic requests with component

dependency model to isolate culprit components
– “health” reporting to detect failed/failing components

» Failure information, self-test results propagated
upwards

– Discovery of network, power topology
» Don’t rely on things connected according to plans

– Techniques: Stamp data blocks with modules used; Log
faults, errors, failures and recovery methods

Slide 31

Overview towards AME via ROC
• New foundation to reduce MTTR

– Cope with fact that people, SW, HW fail (Peres’s Law)
– Transactions/snapshots to undo failures, bad repairs
– Recovery benchmarks to evaluate MTTR innovations
– Interfaces to allow fault insertion, input insertion,

report module errors, report module performance
– Module I/O error checking and module isolation
– Log errors and solutions for root cause analysis, give

ranking to potential solutions to problem problem
• Significantly reducing MTTR (HW/SW/LW)
=> Significantly increased availability
+ Significantly improved maintenance costs

Slide 32

Rest of Talk
• Are we already at 99.999% availability?
• How does ROC compare to traditional High
Availability/Fault Tolerant Computing
solutions?

• What are examples of Availability,
Maintainabilty Benchmarks?

• What might a ROC HW prototype look like?
• What is a ROC application?
• Conclusions

Slide 33

What about claims of 5 9s?
• 99.999% availability from telephone company?

– AT&T switches < 2 hours of failure in 40 years
• Cisco, HP, Microsoft, Sun … claim 99.999%

availability claims (5 minutes down / year) in
marketing/advertising
– HP-9000 server HW and HP-UX OS can deliver
99.999% availability guarantee “in certain pre-
defined, pre-tested customer environments”

– Environmental? Application? Operator?

5 9s from Jim Gray’s talk:
“Dependability

in the Internet Era”

Slide 34

“Microsoft fingers technicians for
crippling site outages”
By Robert Lemos and Melanie Austria Farmer, ZDNet News, January 25, 2001

• Microsoft blamed its own technicians for a
crucial error that crippled the software giant's
connection to the Internet, almost completely
blocking access to its major Web sites for nearly
24 hours… a "router configuration error" had
caused requests for access to the company’s
Web sites to go unanswered…

• "This was an operational error and not the result
of any issue with Microsoft or third-party
products, nor with the security of our networks,"
a Microsoft spokesman said.

• (5 9s possible if site stays up 300 years!)

Slide 35

What is uptime of HP.com?

• Average reboot is about 30.8 days;
if 10 minutes per reboot => 99.9% uptime
– See uptime.netcraft.com/up/graph?site=www.hp.com

Slide 36

Traditional HA vs. Internet reality
• Traditional HA env’t

– stable
» functionality
» software
» workload and scale

– high-quality infrastructure
designed for high availability

» robust hardware: fail-
fast, duplication, error
checking

» custom, well-tested,
single-app software

» single-vendor systems

– certified maintenance
» phone-home reporting
» trained vendor

technicians

• Internet service env’t
– dynamic and evolving

» weekly functionality
changes

» rapid software
development

» unpredictable workload
and fast growth

– commodity infrastructure
coerced into high availability

» cheap hardware lacking
extensive error-checking

» poorly-tested software
cobbled together from
off-the-shelf and custom
code

» multi-vendor systems
– ad-hoc maintenance

» by local or co-lo. techs

Slide 37

How does ROC differ from
Fault Tolerant Computing (FTC)?

• Systems like Tandem, IBM mainframes
concentrate on Hardware Failures
– Mirrored disks, Redundant cross-checked CPUs, …
– Designed to handle 1 failure until repaired

• Also some work on Software failures:
Tandem’s process pairs, transactions, …
– Rather than embracing failure, goal is SW perfection

• No attention to human failures
• FTC works on improving reliability vs. recovery
• Generally ROC is synergistic with FTC

Slide 38

Benchmarking availability
• Results

– graphical depiction of quality of service behavior

Time

Q
oS

 M
et

ric

0
– graph visually describes availability behavior
– can extract quantitative results for:

» degree of quality of service degradation
» repair time (measures maintainability)
» etc.

Repair Time

QoS degradationinjected
fault

normal behavior
(99% conf.)

Slide 39

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example: single-fault in SW RAID

• Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of

vulnerability to second fault
– Solaris: large perf. impact but restores redundancy fast
– Windows: does not auto-reconstruct!

Linux

Solaris

Slide 40

Software RAID: QoS behavior
• Response to transient errors

– Linux is paranoid with respect to transients
» stops using affected disk (and reconstructs) on any

error, transient or not
– Solaris and Windows are more forgiving

» both ignore most benign/transient faults
– neither policy is ideal!

» need a hybrid that detects streams of transients

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
its

 p
er

 s
ec

on
d

130

135

140

145

150

155

160

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures toleratedSolaris

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

Reconstruction

Linux

Slide 41

Software RAID: QoS behavior
• Response to double-fault scenario

– a double fault results in unrecoverable loss of data on
the RAID volume

– Linux: blocked access to volume
– Windows: blocked access to volume
– Solaris: silently continued using volume, delivering

fabricated data to application!
» clear violation of RAID availability semantics
» resulted in corrupted file system and garbage data at

the application level
» this undocumented policy has serious availability

implications for applications

Slide 42

Software RAID: maintainability
• Human error rates

– subjects attempt to repair RAID disk failures
» by replacing broken disk and reconstructing data

– each subject repeated task several times
– data aggregated across 5 subjects

313335Total number of trials
�������User Error – User Recovered
����User Error – Intervention Required
�System ignored fatal input
�Unsuccessful Repair

���Fatal Data Loss
LinuxSolarisWindowsError type

Slide 43

Initial Applications
• Future: services over WWW
• Initial ROC-I apps targets are services

– Internet email service
» Continuously train operator via isolation and fault

insertion
» Undo of SW upgrade, disk replacement
» Run Repair Benchmarks

• ROC-I + Internet Email application is a first
example, not the final solution

Slide 44

Conclusion
• We should congratulate ourselves for 1000X
performance improvement in just 15 years

• In a new century we need a new agenda,
and performance is not the biggest problem

• We need to embrace failure of HW, SW,
people, and still build systems that work

• Have we been building the computing equivalent
of the 19th Century iron-truss bridges?
– What is computer equivalent of the margin of safety

that is the foundation of next century bridges?
• One approach: Recovery-Oriented Computing

Slide 45

“If it’s important, how can you say if it’s
impossible if you don’t try?”

Jean Morreau, a founder of European Union

Questions about ROC? Contact us if interested:
email: patterson@cs.berkeley.edu

http://istore.cs.berkeley.edu/

Slide 46

An Approach to Recovery-Oriented
Computers (ROC)

• 4 Parts to Time to Recovery:
1) Time to detect error,
2) Time to pinpoint error

(“root cause analysis”),
3) Time to chose try several possible solutions

fixes error, and
4) Time to fix error

• Result is Principles of
Recovery Oriented Computers (ROC)

Slide 47

An Approach to ROC

1) Time to Detect errors
• Include interfaces that report
faults/errors from components
– May allow application/system to predict/identify

failures; prediction really lowers MTTR
• Periodic insertion of test inputs into
system with known results vs. wait for
failure reports
– Reduce time to detect
– Better than simple pulse check

Slide 48

An Approach to ROC
2) Time to Pinpoint error
• Error checking at edges of each component

– Program checking analogy: if computation is O(nx),
(x >1) and if check is O(n), little impact to check

– E.g., check if list is sorted before return a sort
• Design each component to allow isolation
and insert test inputs to see if performs

• Keep history of failure symptoms/reasons
and recent behavior (“root cause analysis”)
– Stamp each datum with all the modules it

touched?

Slide 49

An Approach to ROC
• 3) Time to try possible solutions:
• History of errors/solutions
• Undo of any repair to allow trial of
possible solutions
– Support of snapshots, transactions/logging

fundamental in system
– Since disk capacity, bandwidth is fastest growing

technology, use it to improve repair?
– Caching at many levels of systems provides

redundancy that may be used for transactions?
– SW errors corrected by undo?
– Human Errors corrected by undo?

Slide 50

An Approach to ROC
4) Time to fix error:
• Find failure workload, use repair benchmarks

– Competition leads to improved MTTR
• Include interfaces that allow Repair events to
be systematically tested
– Predictable fault insertion allows debugging of repair

as well as benchmarking MTTR
• Since people make mistakes during repair,
“undo” for any maintenance event
– Replace wrong disk in RAID system on a failure; undo

and replace bad disk without losing info
– Recovery oriented => accommodate HW/SW/human

errors during repair

Slide 51

ISTORE-1 Brick
• Webster’s Dictionary:
“brick: a handy-sized unit of building or
paving material typically being rectangular and
about 2 1/4 x 3 3/4 x 8 inches”

• ISTORE-1 Brick: 2 x 4 x 11 inches (1.3x)
– Single physical form factor, fixed cooling required,

compatible network interface to simplify physical
maintenance, scaling over time

– Contents should evolve over time: contains most cost
effective MPU, DRAM, disk, compatible NI

– If useful, could have special bricks (e.g., DRAM rich,
disk poor)

– Suggests network that will last, evolve: Ethernet

Slide 52

Cost of Bandwidth, Safety
• Network bandwidth cost is significant

– 1000 Mbit/sec/month => $6,000,000/year
• Security will increase in importance for
storage service providers

• XML => server format conversion for gadgets
=> Storage systems of future need greater
computing ability
– Compress to reduce cost of network bandwidth 3X;

save $4M/year?
– Encrypt to protect information in transit for B2B

=> Increasing processing/disk for future
storage apps

Slide 53

Disk Limit: Bus Hierarchy
CPU Memory

bus

Memory

External
I/O
bus

(SCSI)

(PCI)

Internal
I/O bus

• Data rate vs. Disk rate
– SCSI: Ultra3 (80 MHz),

Wide (16 bit): 160 MByte/s
– FC-AL: 1 Gbit/s = 125 MByte/s

� Use only 50% of a bus
� Command overhead (~ 20%)
� Queuing Theory (< 70%) (15 disks/bus)

Storage Area
Network

(FC-AL)

Server

Disk
Array

Mem

RAID bus

Slide 54

Clusters and TPC Software 8/’00
• TPC-C: 6 of Top 10 performance are
clusters, including all of Top 5; 4 SMPs

• TPC-H: SMPs and NUMAs
– 100 GB All SMPs (4-8 CPUs)
– 300 GB All NUMAs (IBM/Compaq/HP 32-64 CPUs)

• TPC-R: All are clusters
– 1000 GB :NCR World Mark 5200

• TPC-W: All web servers are clusters (IBM)

Slide 55

Clusters and TPC-C Benchmark
Top 10 TPC-C Performance (Aug. 2000) Ktpm
1. Netfinity 8500R c/s Cluster 441
2. ProLiant X700-96P Cluster 262
3. ProLiant X550-96P Cluster 230
4. ProLiant X700-64P Cluster 180
5. ProLiant X550-64P Cluster 162
6. AS/400e 840-2420 SMP 152
7. Fujitsu GP7000F Model 2000 SMP 139
8. RISC S/6000 Ent. S80 SMP 139
9. Bull Escala EPC 2400 c/s SMP 136
10. Enterprise 6500 Cluster Cluster 135 Slide 56

Cost of Storage System v. Disks
• Examples show cost of way we build current
systems (2 networks, many buses, CPU, …)

Disks Disks
Date Cost Main. Disks /CPU

/IObus
– NCR WM: 10/97 $8.3M -- 1312 10.2 5.0
– Sun 10k: 3/98 $5.2M -- 668 10.4 7.0
– Sun 10k: 9/99 $6.2M $2.1M 1732 27.0 12.0
– IBM Netinf: 7/00 $7.8M $1.8M 7040 55.0 9.0
=>Too complicated, too heterogenous

• And Data Bases are often CPU or bus bound!
– ISTORE disks per CPU: 1.0
– ISTORE disks per I/O bus: 1.0

Slide 57

SCSI v. IDE $/GB

• Prices from PC Magazine, 1995-2000

$-

$150

$300

$450

P
ri

ce
 p

er
 g

ig
ab

yt
e

-

0.50

1.00

1.50

2.00

2.50

3.00

P
ri

ce
 r

at
io

 p
er

 g
ig

ab
ye

:
S

C
S

I v
.

ID
E

S CS I

IDE

Ratio S CS I/IDE

Slide 58

Availability benchmark methodology
• Goal: quantify variation in QoS metrics as
events occur that affect system availability

• Leverage existing performance benchmarks
– to generate fair workloads
– to measure & trace quality of service metrics

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)
– software faults (corrupt input, driver error returns)
– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and

macro-benchmarks

Slide 59

Stage 4: Diagnosis aids
• Goal: assist human diagnosis, not subsume it

– reduce space of possible root causes of failure
– provide detailed “health status” of all components

• Technique #1: dependency analysis
– model dependencies of requests on system resources

» use model to identify potential resource failures when a
request fails

» correlate dependencies across symptomatic requests to
reduce failure set

– generate model dynamically
» stamp requests with ID of each resource/queue they

touch
– issues

» tracking dependencies across decoupling points
» accounting for failures in background non-request

Slide 60

Diagnosis aids
• Technique #2: propagating fault information

– explicitly propagate component failure and recovery
information upward

» provide “health status” of all components
» can attempt to mask symptoms, but still inform upper

layers
» rely on online verification infrastructure for detection

– issues
» devising a general representation for health

information
» using health information to let application participate in

repair

Slide 61

Total Cost of Ownership
• Somehow the words did not come along, they
are

• Administration 13% (all people time)
• Cost of down time 20% (which is opportunity
cost to the organization, and

• heartburn for the CIO)
• Hardware management 3%
• Backup Restore 30% (which includes devices,
media stored away, and people

• time)
• Environmenta 14% (floor space, power, air
conditioning)

h %

