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Outline
• What have we been doing

• Motivation for a new Challenge: 
making things work (including endorsements)

• What have we learned

• New Challenge: Recovery-Oriented Computer

• Examples: benchmarks, prototypes
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Goals,Assumptions of last 15 years
• Goal #1: Improve performance
• Goal #2: Improve performance
• Goal #3: Improve cost-performance
• Assumptions

– Humans are perfect (they don’t make mistakes during 
installation, wiring, upgrade, maintenance or repair)

– Software will eventually be bug free 
(good programmers write bug-free code)

– Hardware MTBF is already very large (~100 years 
between failures), and will continue to increase
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After 15 year improving 
Performance

• Availability is now a vital metric for servers!
– near-100% availability is becoming mandatory

» for e-commerce, enterprise apps, online services, ISPs
– but, service outages are frequent

» 65% of IT managers report that their websites were 
unavailable to customers over a 6-month period

• 25%: 3 or more outages
– outage costs are high

» social effects: negative press, loss of customers who 
“click over” to competitor

Source: InternetWeek 4/3/2000
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Downtime Costs (per Hour)
• Brokerage operations $6,450,000
• Credit card authorization $2,600,000
• Ebay (1 outage 22 hours) $225,000
• Amazon.com $180,000
• Package shipping services $150,000
• Home shopping channel $113,000
• Catalog sales center $90,000
• Airline reservation center $89,000
• Cellular service activation $41,000
• On-line network fees $25,000
• ATM service fees $14,000

Source: InternetWeek 4/3/2000 + Fibre Channel: A Comprehensive Introduction, R. Kembel
2000, p.8. ”...based on a survey done by Contingency Planning Research." Slide 6

Jim Gray: Trouble-Free Systems  
• Manager 

– Sets goals
– Sets policy
– Sets budget
– System does the rest.

• Everyone is a CIO 
(Chief Information Officer)

• Build a system 
– used by millions of people each day
– Administered and managed by a ½ time person.

» On hardware fault, order replacement part
» On overload, order additional equipment
» Upgrade hardware and software automatically.

“What Next?  
A dozen remaining IT problems”

Turing Award Lecture, 
FCRC, 

May 1999
Jim Gray
Microsoft
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Lampson: Systems Challenges
• Systems that work

– Meeting their specs
– Always available
– Adapting to changing environment
– Evolving while they run
– Made from unreliable components
– Growing without practical limit

• Credible simulations or analysis
• Writing good specs
• Testing
• Performance

– Understanding when it doesn’t matter

“Computer Systems Research
-Past and Future” 

Keynote address, 
17th  SOSP, 

Dec. 1999
Butler Lampson

Microsoft
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Hennessy: What Should the “New World” 
Focus Be?• Availability

– Both appliance & service
• Maintainability

– Two functions:
» Enhancing availability by preventing failure
» Ease of SW and HW upgrades

• Scalability
– Especially of service

• Cost
– per device and per service transaction

• Performance
– Remains important, but its not SPECint

“Back to the Future: 
Time to Return to Longstanding

Problems in Computer Systems?” 
Keynote address, 

FCRC, 
May 1999

John Hennessy
Stanford
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The real scalability problems: AME
• Availability

– systems should continue to meet quality of service 
goals despite hardware and software failures

• Maintainability
– systems should require only minimal ongoing human 

administration, regardless of scale or complexity: 
Today, cost of maintenance = 10X cost of purchase

• Evolutionary Growth
– systems should evolve gracefully in terms of 

performance, maintainability, and availability as they 
are grown/upgraded/expanded

• These are problems at today’s scales, and will 
only get worse as systems grow
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Total Cost of Ownership (IBM)

HW 
management 

3%

Environmental
14%

Downtime
20%

Purchase
20%

Administration 
13%

Backup 
Restore 
30%

•Administration: all people time
•Backup Restore: devices, media, and people time
•Environmental: floor space, power, air conditioning
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Lessons learned from Past Projects 
for which might help AME

• Know how to improve performance (and cost)
– Run system against workload, measure, innovate, repeat
– Benchmarks standardize workloads, lead to competition, 

evaluate alternatives; turns debates into numbers
• Major improvements in Hardware Reliability

– 1990 Disks 50,000 hour MTBF to 1,200,000 in 2000
– PC motherboards from 100,000 to 1,000,000 hours

• Yet Everything has an error rate
– Well designed and manufactured HW: >1% fail/year
– Well designed and tested SW: > 1 bug / 1000 lines
– Well trained people doing routine tasks: 1%-2%
– Well run collocation site (e.g., Exodus): 

1 power failure per year, 1 network outage per year
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Lessons learned from Past Projects 
for AME

• Maintenance of machines (with state) expensive
– ~5X to 10X cost of HW
– Stateless machines can be trivial to maintain (Hotmail)

• System admin primarily keeps system available
– System +  clever human working during failure = uptime
– Also plan for growth, software upgrades, configuration, 

fix performance bugs, do backup
• Software upgrades necessary, dangerous

– SW bugs fixed, new features added, but stability?
– Admins try to skip upgrades, be the last to use one
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Lessons learned from Internet
• Realities of Internet service environment:

– hardware and software failures are inevitable
» hardware reliability still imperfect
» software reliability thwarted by rapid evolution
» Internet system scale exposes second-order failure modes

– system failure modes cannot be modeled or predicted
» commodity components do not fail cleanly
» black-box system design thwarts models
» unanticipated failures are normal

– human operators are imperfect
» human error accounts for ~50% of all system failures

Sources: Gray86, Hamilton99, Menn99, Murphy95, Perrow99, Pope86
Slide 14

  Cause of System Crashes       
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Lessons learned from Past Projects 
for AME

• Failures due to people up, hard to measure
– VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01
– HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?
– How get administrator to admit mistake? (Heisenberg?)
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Lessons learned from Past Projects 
for AME

• “Sources of Failure in the Public Switched 
Telephone Network,” Kuhn
– FCC Records 1992-1994; IEEE Computer, 30:4 (Apr 97)
– Overload (not sufficient switching to lower costs) 

another 6% outages, 44% minutes

Number of Outages  

Human-company
Human-external
HW failures
Act of Nature
SW failure
Vandalism

Minutes of Failure  
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Learning from other fields: PSTN
• FCC-collected data on outages in the US 
public-switched telephone network

– metric: breakdown of customer calls blocked by system outages 
(excluding natural disasters). Jan-June 2001

9%

47%

17%

5%

22%

Human-co.

Human-ext.

Hardware Failure

Software Failure

Overload

Vandalism

Human error accounts for 
56%56% of all blocked calls

– comparison with 1992-4 data shows that human error is the only 
factor that is not improving over time
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Lessons learned from Past Projects 
for AME

• Components fail slowly
– Disks, Memory, Software give indications before fail
(Interfaces don’t pass along this information)

• Component performance varies
– Disk inner track vs. outer track: 1.8X Bandwidth
– Refresh of DRAM
– Daemon processes in nodes of cluster
– Error correction, retry on some storage accesses
– Maintenance events in switches
(Interfaces don’t pass along this information)
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Lessons Learned from Other Fields
Common threads in accidents ~3 Mile Island
1.More multiple failures than you believe 

possible, in part because accumulate
2. Operators cannot fully understand system 

because errors in implementation, 
measurement system, warning systems.  
Also complex, hard to predict interactions 

3.Tendency to blame operators afterwards (60-80%), 
but they must operate with missing, wrong information

4.The systems are never all working fully properly:    
bad warning lights, sensors out, things in repair

5.Systems that kick in when trouble often flawed.  At 3 
Mile Island problem 2 valves left in the wrong position-
they were symmetric parts of a redundant system used 
only in an emergency.  The fact that the facility runs 
under normal operation masks errors in error handling

Charles Perrow, Normal Accidents: Living with High Risk Technologies, Perseus Books, 1990
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Lessons Learned from Other Fields
• 1800s: 1/4 iron truss railroad bridges failed!
• Techniques invented since: 

– Learn from failures vs. successes 
– Redundancy to survive some failures
– Margin of safety 3X-6X vs. calculated load

• 1 sentence definition of safety
– “A safe structure will be one whose 

weakest link is never overloaded by 
the greatest force to which the 
structure is subjected.”

• Safety is part of Civil Engineering DNA
– “Structural engineering is the science and art of 

designing and making, with economy and elegance, 
buildings, bridges, frameworks, and similar structures so 
that they can safely resist the forces to which they may 
be subjected” Slide 20

Lessons Learned from Other Fields
• Human errors of 2 types

– Slips/Lapses: error in execution/memory
– Mistakes: error in plan

Unintentional

Intentional

• Model of cognitive actions and thus errors:
Generic Error Modeling System
• Skill Based: stored patterns determines response; 

before a problem occurs; ~ 60% of errors
• Rule Based: if-then production rules learned by 

experience; post problem; stored in a hierarchy, with 
most general at top, exceptions at the bottom; ~ 30%

• Knowledge Based: when if-then rules don’t solve, then 
must do new solution in real time. After problem occurs; 
only option is trial and error; ~ 10%
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Human Error
• Cognitive Strain leads people to use least effort 

to solve problem, particularly when under stress 
of a disaster, people will naturally try shortcuts 
SB < RB < KB
– Humans: both fast parallel searching (SB/RB), and 

slow, serial searching that they don’t like to do (KB)
– When conditions are appropriate, select the rules that 

are most frequently used (“frequency gambling”)
– “In short, humans are furious pattern matchers.”

• Human error detection rates ~3/4 
(SB: 86%; R 73%; KB 70%)
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Human Error: Automation irony
• “Automation irony”

• Designers try to reduce reliance on humans, 
leaving system vulnerable to designer errors

• What they can’t automate, they leave to humans

• Humans terrible at this; easy stuff handled, do 
everything at KB level, often under time pressure
– “Even if its possible to build up skills of operators via 
game playing and simulation, there is no guarantee 
that this situation would be relevant, except in some 
very general sense, to an upcoming event.”

• “Active” errors (by operator) are inevitable
• “Latent” errors (designer, managers, not 

immediate operator errors) accumulate
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Other Fields
• How to minimize error affordances:

» Design for consistency between designer,
system, user models; good conceptual model

» Simplify model so matches human limits: 
working memory, problem solving

» Make visible what the options are, 
and what are the consequences of actions

» Exploit natural mappings between intentions and 
possible actions, actual state and what is perceived, …

» Use constraints (natural, artificial) to guide user
» Design for errors. Assume their occurrence. Plan for 

error recovery. Make it easy to reverse action and 
make hard to perform irreversible ones. 

» When all else fails, standardize: ease of use more 
important, only standardize as last resort
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Lessons Learned from Other 
Cultures

• Code of Hammurabi, 1795-1750 BC, Babylon
– 282 Laws on 8-foot stone monolith 

229. If a builder build a house for some one, 
and does not construct it properly, and the 
house which he built fall in and kill its owner, 
then that builder shall be put to death.

230. If it kill the son of the owner the son of 
that builder shall be put to death.

232. If it ruin goods, he shall make 
compensation for all that has been ruined, and 
inasmuch as he did not construct properly this 
house which he built and it fell, he shall re-
erect the house from his own means.

• Do we need Babylonian quality standards?
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Outline
• What have we been doing

• Motivation for a new Challenge: making things 
work (including endorsements)

• What have we learned

• New Challenge: Recovery-Oriented Computer

• Examples: benchmarks, prototypes
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Recovery-Oriented Computing 
Hypothesis

“If a problem has no solution, it may not be a problem, 
but a fact, not to be solved, but to be coped with over time”

— Shimon Peres

• Failures are a fact, and recovery/repair is how 
we cope with them

• Improving recovery/repair improves availability
– UnAvailability =  MTTR

MTTF
– 1/10th MTTR just as valuable as 10X MTBF

• Since major Sys Admin job is recovery after 
failure, ROC also helps with maintenance

(assuming MTTR much less MTTF)
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Tentative ROC Principles:
#1 Isolation and Redundancy

• System is Partitionable
– To isolate faults
– To enable online repair/recovery
– To enable online HW growth/SW upgrade
– To enable operator training/expand experience on 

portions of real system
– Techniques: Geographically replicated sites, Shared 

nothing cluster, Separate address space inside CPU
• System is Redundant

– Sufficient HW redundancy/Data replication => part of 
system down but satisfactory service still available

– Enough to survive 2nd failure during recovery
– Techniques: RAID-6, N-copies of data Slide 28

Tentative ROC Principles 
#2 Online verification

• System enables input insertion, output check of 
all modules (including fault insertion)
– To check module sanity to find failures faster
– To test corrections of recovery mechanisms

» insert (random) faults and known-incorrect inputs
» also enables availability benchmarks

– To expose & remove latent errors from each system
– To operator train/expand experience of operator

» Periodic reports to management on skills
– To discover if warning system is broken
– Techniques: Global invariants; Topology discovery; 

Program Checking (SW ECC)
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Tentative ROC Principles 
#3 Undo support

• ROC system should offer Undo 
– To recover from operator errors

» People detect  3 of 4 errors, so why not undo?
– To recover from inevitable SW errors

» Restore entire system state to pre-error version
– To simplify maintenance by supporting trial and error

» Create a forgiving/reversible environment
– To recover from operator training after fault insertion
– To replace traditional backup and restore
– Techniques: Checkpointing, Logging; time travel (log 

structured) file system; Virtual machines; “Go Back” file 
protection
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Tentative ROC Principles 
#4 Diagnosis Support

• System assists human in diagnosing problems
– Root-cause analysis to suggest possible failure points

» Track resource dependencies of all requests
» Correlate symptomatic requests with component 

dependency model to isolate culprit components
– “health” reporting to detect failed/failing components

» Failure information, self-test results propagated 
upwards

– Discovery of network, power topology
» Don’t rely on things connected according to plans

– Techniques: Stamp data blocks with modules used; Log 
faults, errors, failures and recovery methods
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Overview towards AME via ROC
• New foundation to reduce MTTR

– Cope with fact that people, SW, HW fail (Peres’s Law)
– Transactions/snapshots to undo failures, bad repairs
– Recovery benchmarks to evaluate MTTR innovations
– Interfaces to allow fault insertion, input insertion, 

report module errors, report module performance
– Module I/O error checking and module isolation
– Log errors and solutions for root cause analysis, give 

ranking to potential solutions to problem problem 
• Significantly reducing MTTR (HW/SW/LW) 
=> Significantly increased availability 
+  Significantly improved maintenance costs
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Rest of Talk
• Are we already at 99.999% availability?
• How does ROC compare to traditional High 
Availability/Fault Tolerant Computing 
solutions?

• What are examples of Availability, 
Maintainabilty Benchmarks?

• What might a ROC HW prototype look like?
• What is a ROC application?
• Conclusions
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What about claims of 5 9s?
• 99.999% availability from telephone company?

– AT&T switches < 2 hours of failure in 40 years
• Cisco, HP, Microsoft, Sun … claim 99.999% 

availability claims (5 minutes down / year) in 
marketing/advertising
– HP-9000 server HW and HP-UX OS can deliver 
99.999% availability guarantee “in certain pre-
defined, pre-tested customer environments” 

– Environmental? Application? Operator?

5 9s from Jim Gray’s talk: 
“Dependability 

in the Internet Era”
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“Microsoft fingers technicians for 
crippling site outages”
By Robert Lemos and Melanie Austria Farmer, ZDNet News, January 25, 2001

• Microsoft blamed its own technicians for a 
crucial error that crippled the software giant's 
connection to the Internet, almost completely 
blocking access to its major Web sites for nearly 
24 hours… a "router configuration error" had 
caused requests for access to the company’s 
Web sites to go unanswered…

• "This was an operational error and not the result 
of any issue with Microsoft or third-party 
products, nor with the security of our networks," 
a Microsoft spokesman said.

• (5 9s possible if site stays up 300 years!)
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What is uptime of HP.com?

• Average reboot is about 30.8 days; 
if 10 minutes per reboot => 99.9% uptime
– See uptime.netcraft.com/up/graph?site=www.hp.com
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Traditional HA vs. Internet reality
• Traditional HA env’t

– stable
» functionality
» software
» workload and scale

– high-quality infrastructure 
designed for high availability

» robust hardware: fail-
fast, duplication, error 
checking 

» custom, well-tested, 
single-app software

» single-vendor systems

– certified maintenance
» phone-home reporting
» trained vendor 

technicians

• Internet service env’t
– dynamic and evolving

» weekly functionality 
changes

» rapid software 
development

» unpredictable workload 
and fast growth

– commodity infrastructure 
coerced into high availability

» cheap hardware lacking 
extensive error-checking

» poorly-tested software 
cobbled together from 
off-the-shelf and custom 
code

» multi-vendor systems
– ad-hoc maintenance

» by local or co-lo. techs
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How does ROC differ from 
Fault Tolerant Computing (FTC)?

• Systems like Tandem, IBM mainframes 
concentrate on Hardware Failures
– Mirrored disks, Redundant cross-checked CPUs, …
– Designed to handle 1 failure until repaired

• Also some work on Software failures: 
Tandem’s process pairs, transactions, …
– Rather than embracing failure, goal is SW perfection

• No attention to human failures
• FTC works on improving reliability vs. recovery
• Generally ROC is synergistic with FTC
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Benchmarking availability
• Results

– graphical depiction of quality of service behavior

Time

Q
oS

 M
et

ric

0
– graph visually describes availability behavior
– can extract quantitative results for:

» degree of quality of service degradation
» repair time (measures maintainability)
» etc.

Repair Time

QoS degradationinjected
fault

normal behavior
(99% conf.)
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Example: single-fault in SW RAID

• Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of 

vulnerability to second fault
– Solaris: large perf. impact but restores redundancy fast
– Windows: does not auto-reconstruct!

Linux

Solaris
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Software RAID: QoS behavior
• Response to transient errors

– Linux is paranoid with respect to transients
» stops using affected disk (and reconstructs) on any

error, transient or not
– Solaris and Windows are more forgiving

» both ignore most benign/transient faults
– neither policy is ideal!

» need a hybrid that detects streams of transients
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Software RAID: QoS behavior
• Response to double-fault scenario

– a double fault results in unrecoverable loss of data on 
the RAID volume

– Linux: blocked access to volume
– Windows: blocked access to volume
– Solaris: silently continued using volume, delivering 

fabricated data to application!
» clear violation of RAID availability semantics
» resulted in corrupted file system and garbage data at 

the application level
» this undocumented policy has serious availability 

implications for applications
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Software RAID: maintainability
• Human error rates

– subjects attempt to repair RAID disk failures
» by replacing broken disk and reconstructing data

– each subject repeated task several times
– data aggregated across 5 subjects

313335Total number of trials
�������User Error – User Recovered
����User Error – Intervention Required
�System ignored fatal input
�Unsuccessful Repair

���Fatal Data Loss
LinuxSolarisWindowsError type
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Initial Applications
• Future: services over WWW
• Initial ROC-I apps targets are services

– Internet email service
» Continuously train operator via isolation and fault 

insertion
» Undo of SW upgrade, disk replacement
» Run Repair Benchmarks

• ROC-I + Internet Email application is a first 
example, not the final solution
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Conclusion
• We should congratulate ourselves for 1000X 
performance improvement in just 15 years

• In a new century we need a new agenda, 
and performance is not the biggest problem

• We need to embrace failure of HW, SW, 
people, and still build systems that work

• Have we been building the computing equivalent 
of the 19th Century iron-truss bridges?
– What is computer equivalent of the margin of safety 

that is the foundation of next century bridges?
• One approach: Recovery-Oriented Computing
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“If it’s important, how can you say if it’s 
impossible if you don’t try?”

Jean Morreau, a founder of European Union

Questions about ROC? Contact us if interested:
email: patterson@cs.berkeley.edu 

http://istore.cs.berkeley.edu/
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An Approach to Recovery-Oriented 
Computers (ROC) 

• 4 Parts to Time to Recovery: 
1) Time to detect error, 
2) Time to pinpoint error 

(“root cause analysis”), 
3) Time to chose try several possible solutions 

fixes error, and 
4) Time to fix error

• Result is Principles of 
Recovery Oriented Computers (ROC)
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An Approach to ROC 

1) Time to Detect errors
• Include interfaces that report 
faults/errors from components
– May allow application/system to predict/identify 

failures; prediction really lowers MTTR
• Periodic insertion of test inputs into 
system with known results vs. wait for 
failure reports
– Reduce time to detect
– Better than simple pulse check
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An Approach to ROC
2) Time to Pinpoint error 
• Error checking at edges of each component

– Program checking analogy: if computation is O(nx), 
(x >1) and if check is O(n), little impact to check

– E.g., check if list is sorted before return a sort
• Design each component to allow isolation 
and insert test inputs to see if performs

• Keep history of failure symptoms/reasons 
and recent behavior (“root cause analysis”)
– Stamp each datum with all the modules it 

touched? 
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An Approach to ROC
• 3) Time to try possible solutions: 
• History of errors/solutions
• Undo of any repair to allow trial of 
possible solutions
– Support of snapshots, transactions/logging 

fundamental in system
– Since disk capacity, bandwidth is fastest growing 

technology, use it to improve repair?
– Caching at many levels of systems provides 

redundancy that may be used for transactions?
– SW errors corrected by undo? 
– Human Errors corrected by undo?
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An Approach to ROC
4) Time to fix error: 
• Find failure workload, use repair benchmarks 

– Competition leads to improved MTTR
• Include interfaces that allow Repair events to 
be systematically tested
– Predictable fault insertion allows debugging of repair 

as well as benchmarking MTTR
• Since people make mistakes during repair, 
“undo” for any maintenance event
– Replace wrong disk in RAID system on a failure; undo 

and replace bad disk without losing info
– Recovery oriented => accommodate HW/SW/human 

errors during repair
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ISTORE-1 Brick
• Webster’s Dictionary: 
“brick: a handy-sized unit of building or 
paving material typically being rectangular and 
about 2 1/4 x 3 3/4 x 8 inches”

• ISTORE-1 Brick: 2 x 4 x 11 inches (1.3x)
– Single physical form factor, fixed cooling required, 

compatible network interface to simplify physical 
maintenance, scaling over time

– Contents should evolve over time: contains most cost 
effective MPU, DRAM, disk, compatible NI

– If useful, could have special bricks (e.g., DRAM rich, 
disk poor)

– Suggests network that will last, evolve: Ethernet

Slide 52

Cost of Bandwidth, Safety
• Network bandwidth cost is significant

– 1000 Mbit/sec/month => $6,000,000/year
• Security will increase in importance for 
storage service providers

• XML => server format conversion for gadgets
=> Storage systems of future need greater 
computing ability
– Compress to reduce cost of network bandwidth 3X; 

save $4M/year?
– Encrypt to protect information in transit for B2B

=> Increasing processing/disk for future 
storage apps
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Disk Limit: Bus Hierarchy
CPU Memory 

bus

Memory

External
I/O 
bus

(SCSI)

(PCI)

Internal
I/O bus

• Data rate vs. Disk rate
– SCSI: Ultra3 (80 MHz), 

Wide (16 bit): 160 MByte/s
– FC-AL: 1 Gbit/s = 125 MByte/s

� Use only 50% of a bus
� Command overhead (~ 20%)
� Queuing Theory (< 70%) (15 disks/bus)

Storage Area
Network

(FC-AL)

Server

Disk
Array

Mem

RAID bus
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Clusters and TPC Software 8/’00
• TPC-C: 6 of Top 10 performance are 
clusters, including all of Top 5; 4 SMPs

• TPC-H: SMPs and NUMAs
– 100 GB  All SMPs (4-8 CPUs)
– 300 GB  All NUMAs (IBM/Compaq/HP 32-64 CPUs)

• TPC-R: All are clusters 
– 1000 GB :NCR World Mark 5200

• TPC-W: All web servers are clusters (IBM)
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Clusters and TPC-C Benchmark
Top 10 TPC-C Performance (Aug. 2000) Ktpm
1. Netfinity 8500R c/s Cluster 441
2. ProLiant X700-96P Cluster 262
3. ProLiant X550-96P Cluster 230
4. ProLiant X700-64P Cluster 180
5. ProLiant X550-64P Cluster 162
6. AS/400e 840-2420 SMP 152
7. Fujitsu GP7000F Model 2000 SMP 139
8. RISC S/6000 Ent. S80 SMP 139
9.   Bull Escala EPC 2400 c/s SMP 136
10. Enterprise 6500 Cluster Cluster 135 Slide 56

Cost of Storage System v. Disks
• Examples show cost of way we build current 
systems (2 networks, many buses, CPU, …)

Disks Disks
Date Cost Main. Disks /CPU 

/IObus
– NCR WM: 10/97 $8.3M -- 1312 10.2 5.0
– Sun 10k: 3/98 $5.2M -- 668 10.4 7.0
– Sun 10k: 9/99 $6.2M $2.1M 1732 27.0 12.0
– IBM Netinf: 7/00 $7.8M $1.8M 7040 55.0 9.0
=>Too complicated, too heterogenous

• And Data Bases are often CPU or bus bound! 
– ISTORE disks per CPU: 1.0
– ISTORE disks per I/O bus: 1.0
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SCSI v. IDE $/GB

• Prices from PC Magazine, 1995-2000
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Availability benchmark methodology
• Goal: quantify variation in QoS metrics as 
events occur that affect system availability

• Leverage existing performance benchmarks
– to generate fair workloads
– to measure & trace quality of service metrics

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)
– software faults (corrupt input, driver error returns)
– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and 

macro-benchmarks

Slide 59

Stage 4: Diagnosis aids
• Goal: assist human diagnosis, not subsume it

– reduce space of possible root causes of failure
– provide detailed “health status” of all components

• Technique #1: dependency analysis
– model dependencies of requests on system resources

» use model to identify potential resource failures when a 
request fails

» correlate dependencies across symptomatic requests to 
reduce failure set

– generate model dynamically
» stamp requests with ID of each resource/queue they 

touch
– issues

» tracking dependencies across decoupling points
» accounting for failures in background non-request 
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Diagnosis aids
• Technique #2: propagating fault information

– explicitly propagate component failure and recovery 
information upward

» provide “health status” of all components
» can attempt to mask symptoms, but still inform upper 

layers
» rely on online verification infrastructure for detection

– issues
» devising a general representation for health 

information
» using health information to let application participate in 

repair
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Total Cost of Ownership
• Somehow the words did not come along, they 
are

• Administration 13% (all people time)
• Cost of down time 20% (which is opportunity 
cost to the organization, and

• heartburn for the CIO)
• Hardware management 3%
• Backup Restore 30% (which includes devices, 
media stored away, and people

• time)
• Environmenta 14% (floor space, power, air 
conditioning)

h %


